Nucleoside analog reverse transcriptase inhibitors (NRTI) are integral components of therapy for HIV-1 infection. The currently approved NRTI have significant limitations that include short- and long-term toxicity, pharmacokinetic interactions with other antiretroviral drugs, and the selection of drug-resistant HIV-1 variants that are cross-resistant with other NRTI. Accordingly, there is a critical need to develop new NRTI that have excellent activity and safety profiles and exhibit little or no cross-resistance with existing drugs. We hypothesize that the rational design of NRTI, based on knowledge of both resistance mechanisms and structural components of NRTI that affect sensitivity to these resistance mechanisms, represents the best strategy to identify new NRTI that are active against drug resistant HIV-1. Using data derived from such structure-activity-resistance studies, we have identified a lead class of compounds, the 3'-azido-2',3'- dideoxypurines (ADPs), that retain potent activity against many drug-resistant variants of HIV-1. These include drug-resistant variants that (i) improve the ability of HIV-1 reverse transcriptase to discriminate between the natural dNTP substrate and the NRTI-triphosphate, and (ii) enhance the excision of the chain- terminating NRTI-monophosphate from the prematurely terminated DNA chain. In this application, we propose in-depth studies of structure-activity-resistance relationships, intracellular pharmacology, toxicity, and resistance selection to identify the most promising clinical candidates from the ADP class. This will be accomplished through three Specific Aims.
In Aim 1, we will synthesize additional, novel ADP analogs, and prodrugs thereof, to optimize potency against both wild-type and NRTI-resistant HIV-1.
In Aim 2, the ADPs that demonstrate favorable anti-HIV-1 activity and cross-resistance profiles will be further characterized by testing their potential toxicity toward human mitochondria and bone marrow progenitor cells.
In Aim 3, we will select and characterize HIV-1 variants that are resistant to the ADPs, and elucidate the molecular mechanism(s) by which resistance is conferred. The identification and development of the novel ADPs through the rational design and assessments proposed in this application could help meet the expanding need for potent and safe NRTI that are active against drug-resistant HIV-1. ? ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI071846-02
Application #
7373579
Study Section
AIDS Discovery and Development of Therapeutics Study Section (ADDT)
Program Officer
Turk, Steven R
Project Start
2007-03-15
Project End
2011-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
2
Fiscal Year
2008
Total Cost
$575,802
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Sluis-Cremer, Nicolas; Wainberg, Mark A; Schinazi, Raymond F (2015) Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiol 10:1773-82
Meteer, Jeffrey D; Schinazi, Raymond F; Mellors, John W et al. (2014) Molecular mechanism of HIV-1 resistance to 3'-azido-2',3'-dideoxyguanosine. Antiviral Res 101:62-7
Amblard, Franck; Zhang, Hongwang; Zhou, Longhu et al. (2013) Synthesis and evaluation of non-dimeric HCV NS5A inhibitors. Bioorg Med Chem Lett 23:2031-4
Zhang, Hongwang; Zhou, Longhu; Amblard, Franck et al. (2012) Synthesis and evaluation of novel potent HCV NS5A inhibitors. Bioorg Med Chem Lett 22:4864-8
Herman, Brian D; Schinazi, Raymond F; Zhang, Hong-wang et al. (2012) Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3'-azido-2',3'-dideoxyguanosine-5'-triphosphates as adenosine analogs. Nucleic Acids Res 40:381-90
Gavegnano, Christina; Kennedy, Edward M; Kim, Baek et al. (2012) The Impact of Macrophage Nucleotide Pools on HIV-1 Reverse Transcription, Viral Replication, and the Development of Novel Antiviral Agents. Mol Biol Int 2012:625983
Zhang, Hong-Wang; Detorio, Mervi; Herman, Brian D et al. (2011) Synthesis, antiviral activity, cytotoxicity and cellular pharmacology of l-3'-azido-2',3'-dideoxypurine nucleosides. Eur J Med Chem 46:3832-44
Cho, Jong Hyun; Amblard, Franck; Coats, Steven J et al. (2011) Efficient synthesis of nucleoside aryloxy phosphoramidate prodrugs utilizing benzyloxycarbonyl protection. Tetrahedron 67:5487-5493
Nie, Ting; Detorio, Mervi; Schinazi, Raymond F (2011) Universal profiling of HIV-1 pol for genotypic study and resistance analysis across subtypes. Antivir Ther 16:1267-75
Meteer, Jeffrey D; Koontz, Dianna; Asif, Ghazia et al. (2011) The base component of 3'-azido-2',3'-dideoxynucleosides influences resistance mutations selected in HIV-1 reverse transcriptase. Antimicrob Agents Chemother 55:3758-64

Showing the most recent 10 out of 18 publications