Increased drug and pesticide resistance has rendered many control programs for mosquito-borne diseases useless, resulting in an urgent need for new control strategies. Malaria parasites must develop for up to two weeks in the mosquito, and conceptually, this development can be disrupted by enhancing mosquito innate immunity or by shortening the mosquito's lifespan. The insulin/IGF-1 signaling cascade (ISC) regulates both innate immunity and lifespan in Caenorhabditis elegans and Drosophila melanogaster, and, thus, could be manipulated to reduce vector competence of mosquitoes. Based on our preliminary data, exogenous insulin in the bloodmeal modulates not only lifespan and oxidative stress response in female mosquitoes, but also Plasmodium development. To further elucidate these promising results, we will first determine whether exogenous human insulin and IGF-1 can stimulate the ISC in the midgut and other tissues, such as the fat body, in the mosquito Anopheles stephensi. We will also test the impact of these factors on oxidative stress and NO production, key components of aging, innate immunity, and signaling. Next we will engineer An. stephensi mosquitoes to express active forms of two ISC proteins, Akt and PTEN, in the midgut after a bloodmeal. Because AKT activates the midgut ISC and PTEN has the opposite effect, we will be able to answer three questions: (1) Does the midgut ISC regulate oxidative stress and in turn aging and innate immunity in An. stephensi? (2) Does the midgut ISC affect signaling in other An. stephensi tissues? And (3) How do changes to the ISC affect Plasmodium falciparum development in An. stephensi? Finally, we will examine the impact of physiological levels of exogenous human insulin and IGF-1 on the transgenic mosquitoes described above. Insulin levels in human blood can vary by as much as 10-fold after a meal and during malaria parasite infection. By understanding the effects of this naturally occurring variation in human bloodmeals, we can better predict the efficacy of Akt and PTEN over expression on critical variables (e.g., lifespan and immunity) of vector competence. In summary, our proposed work will test both basic and applied hypotheses regarding the ISC and its impacts on mosquito physiology and vector competence that were conceptualized for model invertebrates and mammals. In addition, our work offers a different approach to the transgenic modification of mosquitoes to limit their vectorial capacity.

Public Health Relevance

After being ingested in a bloodmeal, malaria parasites, viruses, and nematodes must develop in mosquitoes for extended periods before being transmitted to humans and reservoir hosts. Our goal is to enhance innate immunity or reduce the lifespan of a model mosquito to prevent completion of pathogen development, so that transmission is reduced or eliminated. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI073745-01A2
Application #
7524385
Study Section
Special Emphasis Panel (ZRG1-IDM-M (02))
Program Officer
Costero, Adriana
Project Start
2008-06-09
Project End
2013-05-31
Budget Start
2008-06-09
Budget End
2009-05-31
Support Year
1
Fiscal Year
2008
Total Cost
$511,733
Indirect Cost
Name
University of Arizona
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Nuss, Andrew B; Brown, Mark R (2018) Isolation of an insulin-like peptide from the Asian malaria mosquito, Anopheles stephensi, that acts as a steroidogenic gonadotropin across diverse mosquito taxa. Gen Comp Endocrinol 258:140-148
Pietri, Jose E; Pakpour, Nazzy; Napoli, Eleonora et al. (2016) Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochem J 473:3487-3503
Wang, Bo; Pakpour, Nazzy; Napoli, Eleonora et al. (2015) Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection. Parasit Vectors 8:424
Cator, Lauren J; Pietri, Jose E; Murdock, Courtney C et al. (2015) Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential. Sci Rep 5:11947
Luckhart, Shirley; Pakpour, Nazzy; Giulivi, Cecilia (2015) Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol 36:73-9
Pietri, Jose E; Pietri, Eduardo J; Potts, Rashaun et al. (2015) Plasmodium falciparum suppresses the host immune response by inducing the synthesis of insulin-like peptides (ILPs) in the mosquito Anopheles stephensi. Dev Comp Immunol 53:134-44
Arik, Anam J; Hun, Lewis V; Quicke, Kendra et al. (2015) Increased Akt signaling in the mosquito fat body increases adult survivorship. FASEB J 29:1404-13
Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R et al. (2015) Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:1258522
Jiang, Xiaofang; Peery, Ashley; Hall, A Brantley et al. (2014) Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biol 15:459
Pakpour, Nazzy; Riehle, Michael A; Luckhart, Shirley (2014) Effects of ingested vertebrate-derived factors on insect immune responses. Curr Opin Insect Sci 3:1-5

Showing the most recent 10 out of 23 publications