Vibrio cholerae is the causative agent of the severe diarrheal disease, cholera, that is endemic in much of Asia, Africa, and South America. The species is quite diverse, although only strains of the O1 or O139 serogroup cause epidemic disease. However, a significant amount of disease occurs globally in sporadic episodes and is caused by strains belonging to non-O1/non-O139 serogroups. Unlike pathogenic O1 and O139 strains, the vast majority of pathogenic non-O1/non-O139 strains do not carry the well characterized virulence factors for colonization (TCP) and toxin production (CT), and presumably cause disease by an unknown mechanism(s). Whole genome sequencing of a clinically isolated non-O1/non-O139 strain, AM-19226, has revealed the presence of open reading frames (ORFs) having significant similarity to genes encoding a Type Three Secretion System (TTSS). These ORFs appear to be conserved among a subset of non-O1/non-O139 strains, as well as pandemic strains of V. parahaemolyticus. Many pathogenic bacteria use TTSSs to translocate virulence factors into the cytosol of host cells, and we hypothesize that the presence of similar ORFs in V. cholerae represents a newly identified mechanism for host cell interaction and virulence acquired by these strains. Experiments suggest that the TTSS is indeed functional and has a role in pathogenesis. Deletion of a critical component of the TTSS severely attenuates the ability of strain AM-19226 to colonize the infant mouse model. Furthermore, an effector protein (whose secretion is TTSS dependent) has been identified, and it appears to have a role in the reorganization of host cell actin. We propose to use three complimentary in vitro approaches to begin to understand TTSS mediated pathogenesis in V. cholerae. The first approach is to identify additional effector proteins that promote virulence, using complimentary in vitro and in vivo model systems. The second approach is to dissect how effector proteins interact with host cells at the molecular level to cause disease, and the third is to use genomic approaches to begin to understand the regulatory network governing expression of the genes encoding effector proteins and the TTSS structural apparatus. Project Narrative: Today cholera is considered a health threat mainly in developing nations, regions lacking modern sanitation facilities, and in countries experiencing disrupted civil infrastructure due to war or environmental crises. The disease poses a threat to individuals traveling to endemic areas, and the United States CDC considers some strains a Category B level BioTerrorism threat because of the potential for spread via contaminated food or water. While O1 and O139 epidemic causing strains are well studied, this proposal seeks to understand the virulence mechanisms employed by strains of other serogroups that represent an emerging threat.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI073785-02
Application #
7631195
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Hall, Robert H
Project Start
2008-06-15
Project End
2013-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
2
Fiscal Year
2009
Total Cost
$385,000
Indirect Cost
Name
University of Rochester
Department
Microbiology/Immun/Virology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Miller, Kelly A; Chaand, Mudit; Gregoire, Stacy et al. (2016) Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol 18:1857-1870
Miller, Kelly A; Sofia, Madeline K; Weaver, Jacob W A et al. (2016) Regulation by ToxR-Like Proteins Converges on vttRB Expression To Control Type 3 Secretion System-Dependent Caco2-BBE Cytotoxicity in Vibrio cholerae. J Bacteriol 198:1675-1682
Seward, Christopher H; Manzella, Alexander; Alam, Ashfaqul et al. (2015) Using S. cerevisiae as a Model System to Investigate V. cholerae VopX-Host Cell Protein Interactions and Phenotypes. Toxins (Basel) 7:4099-110
Chaand, Mudit; Dziejman, Michelle (2013) Vibrio cholerae VttR(A) and VttR(B) regulatory influences extend beyond the type 3 secretion system genomic island. J Bacteriol 195:2424-36
Miller, Kelly A; Hamilton, Elaine; Dziejman, Michelle (2012) The Vibrio cholerae trh gene is coordinately regulated in vitro with type III secretion system genes by VttR(A)/VttR(B) but does not contribute to Caco2-BBE cell cytotoxicity. Infect Immun 80:4444-55
Alam, Ashfaqul; Miller, Kelly A; Chaand, Mudit et al. (2011) Identification of Vibrio cholerae type III secretion system effector proteins. Infect Immun 79:1728-40
Valentino, Michael D; Abdul-Alim, C Siddiq; Maben, Zachary J et al. (2011) A broadly applicable approach to T cell epitope identification: application to improving tumor associated epitopes and identifying epitopes in complex pathogens. J Immunol Methods 373:111-26
Alam, Ashfaqul; Tam, Vincent; Hamilton, Elaine et al. (2010) vttRA and vttRB Encode ToxR family proteins that mediate bile-induced expression of type three secretion system genes in a non-O1/non-O139 Vibrio cholerae strain. Infect Immun 78:2554-70