Pertussis, caused by Bordetella pertussis remains a considerable economic and health burden in the USA, despite very high coverage of vaccination. Current pertussis vaccines although effective at preventing the severe form of disease do not prevent the carrier state. Adult and adolescent carriers are responsible for the transmission of the bacterium to infants and young children, in whom the disease is severe and sometimes lethal. There is an urgent need to identify new factors that will be protective against bacterial carriage and will be included in the acellular vaccine. It is hypothesized that nasopharyngeal carriage of B. pertussis in humans is due to its ability to exist in a sessile form known as biofilms. Our preliminary results demonstrate that B. pertussis exists in mice as multicellular community adherent to the nasal epithelium, which are reminiscent of biofilms. The overall objectives of this research are to study the role of the biofilm-associated Bps polysaccharide in biofilm development and pathogenesis and to gain insight into the regulatory circuitry that controls bps expression in biofilms and in the respiratory tract. Bps is similar to PGA/PIA/PNAG (poly-2-1,6-N- acetylglucosamine) polysaccharides of other bacteria including a number of pathogens.
In Specific Aim 1, biologically relevant in vitro model systems will be utilized to study the mechanistic basis of the role of Bps in biofilm formation. The importance of Bps in providing protection from anti-microbial compounds will be examined by testing its role in conferring resistance against antibiotics, antimicrobial peptides and reactive oxygen species. It is hypothesized that Bps mediates survival and persistence of B. pertussis in the respiratory tract by playing an immunomodulatory role and by targeting one or more components of the immune system. Mouse models of B. pertussis intranasal infection will be employed to test these hypotheses.
In Specific Aim 2, the establishment of temporal and spatial expression gradient of bps during biofilm formation and in the respiratory tract will be examined by real time RT PCR assays and measurement of GFP fluorescence. Finally, to provide insights into the complex networks that operate to control bps expression, the role of a regulatory protein BpsR in controlling the expression of the bps locus in biofilms and in the mouse respiratory tract will be examined. Relevance to public health. This project will provide a better understanding of the pathogenic mechanisms and the infectious cycle of B. pertussis in mammalian hosts. Our studies will stimulate the development of Bps-based vaccines and reagents like antibodies for treatment of pertussis. Since Bps-like polysaccharides are produced by a number of pathogens like Staphylococci, E. coli and Yersinia Spp, and possibly others, our results will contribute towards the treatment and the understanding of a wide variety of bacterial infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI075081-04
Application #
8120564
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Khambaty, Farukh M
Project Start
2008-09-15
Project End
2014-08-31
Budget Start
2011-09-01
Budget End
2014-08-31
Support Year
4
Fiscal Year
2011
Total Cost
$362,637
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Ganguly, Tridib; Johnson, John B; Kock, Nancy D et al. (2014) The Bordetella pertussis?Bps polysaccharide enhances lung colonization by conferring protection from complement-mediated killing. Cell Microbiol 16:1105-18
Sukumar, Neelima; Nicholson, Tracy L; Conover, Matt S et al. (2014) Comparative analyses of a cystic fibrosis isolate of Bordetella bronchiseptica reveal differences in important pathogenic phenotypes. Infect Immun 82:1627-37
Taneja, Neetu Kumra; Ganguly, Tridib; Bakaletz, Lauren O et al. (2013) D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing. J Bacteriol 195:5102-11
Tang, Shuai; Mishra, Meenu; Frazier, Donna P et al. (2012) Positive and negative regulation of prostate stem cell antigen expression by Yin Yang 1 in prostate epithelial cell lines. PLoS One 7:e35570
Nicholson, Tracy L; Conover, Matt S; Deora, Rajendar (2012) Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica. PLoS One 7:e49166
Register, K B; Sukumar, N; Palavecino, E L et al. (2012) Bordetella bronchiseptica in a paediatric cystic fibrosis patient: possible transmission from a household cat. Zoonoses Public Health 59:246-50
Conover, Matt S; Redfern, Crystal J; Ganguly, Tridib et al. (2012) BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol 194:233-42
Conover, Matt S; Mishra, Meenu; Deora, Rajendar (2011) Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 6:e16861
Serra, Diego O; Conover, Matt S; Arnal, Laura et al. (2011) FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One 6:e28811
Conover, Matt S; Sloan, Gina Parise; Love, Cheraton F et al. (2010) The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol 77:1439-55

Showing the most recent 10 out of 13 publications