Defining the molecular interactions between a virus and its host that regulate gene-specific transactivation has been essential to understanding DNA virus persistence and replication. The Human herpesvirus-8 (HHV-8) ORF50/Rta protein is necessary and sufficient for the virus to emerge from latency and replicate (lytic reactivation). Rta interacts directly with the cellular protein called RBP-Jk, which is also required for lytic reactivation. RBP-Jk normally specifies the genes that will be activated by the cellular Notch signal transduction pathway by binding sequence specifically to DNA. In this fashion, RBP-Jk serves as a """"""""landing pad"""""""" for the activated Notch receptor (Notch intracellular domain (NICD)). HHV-8 Rta promotes DNA binding of RBP-Jk during viral reactivation, a mechanism that is fundamentally different from that established for other RBP-Jk-activating proteins. Our preliminary data suggest a gene-specific mechanism for controlling RBP-Jk-dependent activity in HHV-8 infected cells. The overall goal of this application is to define the basic molecular mechanisms that regulate RBP-Jk dependent-transactivation in HHV-8 infected cells. Our studies will shed light on the fundamental regulation of productive and non-productive virus reactivation as determined by promoter-specific transactivation. We will therefore comprehensively identify proteins that bind to essential HHV-8 promoters (Aim 1). We will define the molecular interactions required for Rta stimulation of RBP-Jk DNA binding (Aim 2). We will determine the molecular requirements for forming functional RBP-Jk-containing promoter complexes and HHV-8 reactivation (Aim 3). A series of biochemical and molecular biological approaches are proposed. A biochemical screen for promoter-specific protein-DNA interactions is a major approach. Promoter-reporter, protein-protein and protein-DNA interactions represent the basis for many of the experiments, and include novel, highly quantitative in vitro and in vivo assays. This proposal will shed light on how Notch target genes are specified, and reveal new components of the Notch signal transduction pathway.

Public Health Relevance

This project will advance scientific understanding of the mechanisms by which Human herpesvirus-8 (HHV- 8) interacts with Humans to cause disease. Specifically, the experiments will reveal mechanisms by which the key viral protein Rta re-specifies the target genes stimulated by a cellular signaling pathway that has been associated with Human pathologies. Unique drug targets and diagnostic markers may be revealed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI078138-05
Application #
8416376
Study Section
Virology - B Study Section (VIRB)
Program Officer
Beisel, Christopher E
Project Start
2009-02-15
Project End
2013-06-30
Budget Start
2013-02-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$145,425
Indirect Cost
$52,204
Name
University of Medicine & Dentistry of NJ
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
623946217
City
Newark
State
NJ
Country
United States
Zip Code
07107
DeCotiis, Jennifer L; Lukac, David M (2017) KSHV and the Role of Notch Receptor Dysregulation in Disease Progression. Pathogens 6:
DeCotiis, Jennifer L; Ortiz, Noelle C; Vega, Brian A et al. (2017) An easily transfectable cell line that produces an infectious reporter virus for routine and robust quantitation of Kaposi's sarcoma-associated herpesvirus reactivation. J Virol Methods 247:99-106
Guito, Jonathan; Lukac, David M (2015) KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 7:72-109
Shin, Hye Jin; DeCotiis, Jennifer; Giron, Mario et al. (2014) Histone deacetylase classes I and II regulate Kaposi's sarcoma-associated herpesvirus reactivation. J Virol 88:1281-92
Guito, Jonathan; Gavina, Aileen; Palmeri, Diana et al. (2014) The cellular peptidyl-prolyl cis/trans isomerase Pin1 regulates reactivation of Kaposi's sarcoma-associated herpesvirus from latency. J Virol 88:547-58
Guito, Jonathan; Lukac, David M (2012) KSHV Rta Promoter Specification and Viral Reactivation. Front Microbiol 3:30
Prasad, Alka; Lu, Michael; Lukac, David M et al. (2012) An alternative Kaposi's sarcoma-associated herpesvirus replication program triggered by host cell apoptosis. J Virol 86:4404-19
Liu, Wenzhe; Das, Anish; Morales, Rachel et al. (2012) Chromatin immunoprecipitation and microarray analysis reveal that TFIIB occupies the SL RNA gene promoter region in Trypanosoma brucei chromosomes. Mol Biochem Parasitol 186:139-42
Palmeri, Diana; Carroll, Kyla Driscoll; Gonzalez-Lopez, Olga et al. (2011) Kaposi's sarcoma-associated herpesvirus Rta tetramers make high-affinity interactions with repetitive DNA elements in the Mta promoter to stimulate DNA binding of RBP-Jk/CSL. J Virol 85:11901-15
Lukac, David M (2010) Editorial: quality versus quantity in myeloid infection by a herpesvirus: more than one way to skin the CCAAT? J Leukoc Biol 87:9-12

Showing the most recent 10 out of 11 publications