Extensively drug-resistant tuberculosis (XDR TB) has emerged as a significant global epidemic and poses a particular threat to HIV-infected persons. Drug-resistant TB disease is predominantly thought to develop as a result of selection pressure for drug-resistant mutant bacilli (""""""""amplified resistance""""""""). Drug-resistant TB disease may also occur, however, from exposure to and infection with a TB strain which is already drug-resistant (""""""""primary transmission""""""""). Transmission of drug-resistant TB strains has been well-described in congregate settings, such as hospitals containing highly immunocompromised patients, but few studies have evaluated population-level transmission of drug-resistant TB, and none have done so in a high HIV prevalence setting. The collision of XDR TB and HIV in South Africa offers a unique, early opportunity to study these dual epidemics, which are anticipated to converge in other countries in the future. The current global crisis of drug-resistant TB is due to both amplified resistance and primary transmission, although the relative contribution of each is unknown.
In Aim 1 of this application, we propose a prospective, population-based, cross-sectional study to determine the proportion of new XDR TB cases which develop due to primary transmission as opposed to amplified resistance in Tugela Ferry district, a rural area of South Africa with exceedingly high rates of XDR TB and HIV co-infection. We hypothesize that over three-quarters of XDR TB cases arise due to primary transmission.
In Aim 2, we will combine molecular genotyping with contact tracing and social network analysis to provide insights into the relationships between XDR TB subjects with matching strain genotypes (""""""""clusters"""""""") and the locations where TB transmission may be occurring. We expect to identify that transmission is occurring in not only healthcare, but also community congregate settings. The findings from this study will lead to a better understanding of XDR TB transmission patterns in the Tugela Ferry community, which is critical for targeting interventions to curb the ongoing XDR TB epidemic. The proposed study will be the first to integrate epidemiologic, molecular, and social network analytic methods to study TB transmission in a high HIV prevalence setting. The interactions between HIV infection and drug-resistant TB have been identified as a priority research area by the NIH and the Federal TB Task Force, specifically epidemiologic research and greater use of genotyping to improve understanding of HIV and drug-resistant TB, and implementation of intensive contact tracing and outbreak investigation. This application will address these issues directly and take place at the epicenter of the convergent epidemics of TB, HIV, and drug-resistant TB in rural South Africa, where our research group has been working since 2002. Continuous, population-level surveillance for XDR TB, including culture and drug-susceptibility testing for all TB suspects in Tugela Ferry district, creates a unique opportunity to study XDR TB transmission.

Public Health Relevance

Effective prevention of XDR TB, a disease characterized by extremely high mortality, especially in HIV-infected patients, is crucial to controlling the current epidemic and will require understanding patterns of transmission in both healthcare and community settings. This study, which combines classic contact investigation with advanced molecular epidemiologic techniques and social network analysis, will examine XDR TB transmission patterns in a high-HIV-prevalent, rural, resource-limited setting. Findings will help improve the health of individuals and communities affected by the XDR TB epidemic and will create an evidence-base to guide sound public health policy for XDR TB disease prevention throughout the developing world.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
7R01AI089349-04
Application #
8573287
Study Section
AIDS Clinical Studies and Epidemiology Study Section (ACE)
Program Officer
Mason, Robin M
Project Start
2010-04-15
Project End
2015-03-31
Budget Start
2012-08-12
Budget End
2013-03-31
Support Year
4
Fiscal Year
2012
Total Cost
$550,929
Indirect Cost
$195,929
Name
Emory University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Auld, Sara C; Shah, N Sarita; Mathema, Barun et al. (2018) Extensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communities. Eur Respir J 52:
Auld, Sara C; Shah, N Sarita; Cohen, Ted et al. (2018) Where is tuberculosis transmission happening? Insights from the literature, new tools to study transmission and implications for the elimination of tuberculosis. Respirology :
Nelson, Kristin N; Shah, N Sarita; Mathema, Barun et al. (2018) Spatial Patterns of Extensively Drug-Resistant Tuberculosis Transmission in KwaZulu-Natal, South Africa. J Infect Dis 218:1964-1973
Kapwata, Thandi; Morris, Natashia; Campbell, Angela et al. (2017) Spatial distribution of extensively drug-resistant tuberculosis (XDR TB) patients in KwaZulu-Natal, South Africa. PLoS One 12:e0181797
Shah, N Sarita; Auld, Sara C; Brust, James C M et al. (2017) Transmission of Extensively Drug-Resistant Tuberculosis in South Africa. N Engl J Med 376:243-253
Bablishvili, N; Tukvadze, N; Shashkina, E et al. (2017) Impact of gyrB and eis Mutations in Improving Detection of Second-Line-Drug Resistance among Mycobacterium tuberculosis Isolates from Georgia. Antimicrob Agents Chemother 61:
Allana, Salim; Shashkina, Elena; Mathema, Barun et al. (2017) pncA Gene Mutations Associated with Pyrazinamide Resistance in Drug-Resistant Tuberculosis, South Africa and Georgia. Emerg Infect Dis 23:491-495
Salindri, Argita D; Kipiani, Maia; Kempker, Russell R et al. (2016) Diabetes Reduces the Rate of Sputum Culture Conversion in Patients With Newly Diagnosed Multidrug-Resistant Tuberculosis. Open Forum Infect Dis 3:ofw126
Brust, James C M; Shah, N Sarita; Gandhi, Neel R (2016) More on Treatment Outcomes in Multidrug-Resistant Tuberculosis. N Engl J Med 375:2610
Auld, Sara C; Lee, Scott H; Click, Eleanor S et al. (2016) IFN-? Release Assay Result Is Associated with Disease Site and Death in Active Tuberculosis. Ann Am Thorac Soc 13:2151-2158

Showing the most recent 10 out of 30 publications