In order to curb the rising prevalence of allergic diseases, there is an urgent need to identify etiologic factors that would generate novel preventive or therapeutic strategies. We have some understanding of the role of DNA sequence variation in susceptibility genes contributing to the risk of allergic diseases, however, DNA sequence variation alone does not account for all the observed heritability of allergy. In addition, the combined effects of genes and the environment are more strongly associated with allergy than genes alone. Both these observations suggest a role for epigenetic modifications, which constitute a transmissible memory of past exposures. In particular, environmental exposures in early life seem to have a strong influence on allergies. Indeed, there is scientific agreement that epigenetic studies commencing during pregnancy are needed. While we cannot change DNA sequence, there are acceptable means to prevent or alter epigenetic modifications by changing the environment. To provide critical information as to the role of epigenetic factors, specifically DNA methylation, in allergic disease we will conduct a multigenerational study in the Isle of Wight birth cohort (n = 1,456). This cohort of an F1 generation (now age 20 yr) and their parents (F0) is being expanded to include the next generation (F2) starting during their gestation. Asthma, eczema, rhinitis, and allergic sensitization were characterized in F1 at their birth, and at 1, 2, 4, 10 and 18 years. The F1 women are now of reproductive age, which facilitates the study of epigenetic modifications during F1 pregnancies and in their offspring (F2). We propose to conduct a four-step research study: (1) Filtering of CpG (cytosine-phosphate-guanine) sites based on association of their methylation status with atopy in F1 women;(2) Testing of selected CpG sites for vertical transmission and environmental impacts;(3) Biological validation of selected and tested CpG sites using gene expression arrays;and (4) Prediction of allergic sensitization and eczema in F2 infants. We will start with screening of 27,578 CpG sites located within proximal promoter regions of 14,495 genes and expect to focus on the methylation status of approximately 10-15 genes in prediction of allergy in F2 infants. We will test four hypotheses: (H1) Specific methylation is transferred from parent to child with a stronger vertical transmission of maternal methylation. (H2) DNA methylation in mothers (F1) and their children (F2) is related to modifiable environmental conditions during gestation. (H3) Methylation of selected CpG sites correlates with observed differences in gene expression. (H4) Selected methylation and gene expression patterns in the F2 generation are predictive of increased cord serum IgE level, eczema in infancy, and allergic sensitization. Our research team has a long track record of successful collaboration and two related projects are currently supported by NIH. The team comprises epidemiological and biostatistical knowledge at the University of South Carolina, epigenetic expertise at the University of Southampton (UoS), clinical partners at UoS and the David Hide Asthma &Allergy Research Centre on the Isle of Wight, and a genetics laboratory at Michigan State University.

Public Health Relevance

Early prevention of allergic diseases such as asthma, eczema, and allergic rhinitis is essential to reduce the burden of these high-impact and avoidable diseases. Too little research has focused on the combined effects of genes and modifiable risk factors;however, we have demonstrated important roles for both gene W environment interactions and related DNA methylation. Now, to move toward prevention, we need to understand whether programming, reprogramming, and vertical transmission of DNA methylation can predict allergic diseases in infancy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
7R01AI091905-03
Application #
8416420
Study Section
Infectious Diseases, Reproductive Health, Asthma and Pulmonary Conditions Study Section (IRAP)
Program Officer
Minnicozzi, Michael
Project Start
2011-01-10
Project End
2015-12-31
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
3
Fiscal Year
2013
Total Cost
$636,531
Indirect Cost
$72,508
Name
University of Memphis
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
055688857
City
Memphis
State
TN
Country
United States
Zip Code
38152
Mukherjee, Nandini; Sutter, Thomas R; Arshad, Syed Hasan et al. (2018) Breastfeeding duration modifies the effect of smoking during pregnancy on eczema from early childhood to adolescence. Clin Exp Allergy 48:1688-1697
Iqbal, Sabrina; Lockett, Gabrielle A; Holloway, John W et al. (2018) Changes in DNA Methylation from Age 18 to Pregnancy in Type 1, 2, and 17 T Helper and Regulatory T-Cells Pathway Genes. Int J Mol Sci 19:
Zhang, H; Kaushal, A; Soto-Ramírez, N et al. (2018) Acquisition, remission, and persistence of eczema, asthma, and rhinitis in children. Clin Exp Allergy 48:568-576
Accordini, Simone; Calciano, Lucia; Johannessen, Ane et al. (2018) A three-generation study on the association of tobacco smoking with asthma. Int J Epidemiol 47:1106-1117
Felix, Janine F; Joubert, Bonnie R; Baccarelli, Andrea A et al. (2018) Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol 47:22-23u
Ziyab, Ali H; Mukherjee, Nandini; Kurukulaaratchy, Ramesh J et al. (2018) Leptin receptor gene polymorphisms and sex modify the association between acetaminophen use and asthma among young adults: results from two observational studies. Respir Res 19:179
Mørkve Knudsen, Toril; Rezwan, Faisal I; Jiang, Yu et al. (2018) Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol 142:765-772
Ziyab, Ali H; Hankinson, Jenny; Ewart, Susan et al. (2018) Epistasis between FLG and IL4R Genes on the Risk of Allergic Sensitization: Results from Two Population-Based Birth Cohort Studies. Sci Rep 8:3221
Karmaus, Wilfried; Chen, Su (2017) Changes in blood DNA methylation and incomplete adjustment for blood cell composition. Int J Epidemiol 46:1714-1717
Han, Shengtong; Zhang, Hongmei; Karmaus, Wilfried et al. (2017) Adjusting background noise in cluster analyses of longitudinal data. Comput Stat Data Anal 109:93-104

Showing the most recent 10 out of 48 publications