. Memory T cells are superior to primary T cells in a number of measurable ways. Most studies focus their investigation on studying memory cells resulting from antigenic stimulation. However, using a newly developed experimental method, we have studied the antigen specific T cell repertoire from unimmunized mice and find evidence for memory-like T cells within this pool. These cells bear surface markers typical of cells having undergone homeostatic expansion rather than antigen driven expansion. Thus, unprimed animals contain antigen-specific CD8 T cells expressing phenotypic and functional characteristics of memory cells. We believe this to be the first demonstration that this population includes cells specific for (and reactive to) nominal foreign antigens, and that these cells participate fully in the course of a response against such antigens. We have coined the term Virtual Memory cells to refer to these memory phenotype T cells, specific for nominal antigen, that exist within the unprimed T cell repertoire. The goal of these studies is to determine the mechanism by which these Virtual Memory cells arise within a normal host, the diversity of functions these cells possess, and the degree to which these cells influence, and potentially dominate, the development of cellular immunity. Besides the implications for a greater understanding of basic immunology, the ability to control or manipulate any of the memory-like functions of Virtual Memory cells within an unprimed host may well lead to vaccination methods able to generate, in a fraction of the time currently necessary, a protective primary T cell response. The studies described in this application will determine the origin of Virtual Memory CD8+ T cells and their contribution to the effector and memory populations in response to vaccination and infectious challenge.

Public Health Relevance

We have identified a previously unappreciated population of memory phenotype T cells that exists within the repertoire of naive T cells specific for any given antigen. We propose the term 'Virtual Memory' (VM) to describe this novel population of antigen specific T cells within the unprimed T cell repertoire (in computing, virtual memory describes a form of working memory, based on alternative utilization of existing space). The properties of VM cells indicate that a primary CD8+ T cell response, in a previously unprimed host, is actually the collective result of the response of both naive and memory phenotype T cells. We hypothesize that these pre-existing memory-like CD8 T cells represent a novel, additional arm of the immune repertoire capable of participating in the 'primary' immune response, and we propose to determine the mechanism by which these cells develop within a normal host, the diversity of functions these cells possess, and the degree to which these cells influence, and potentially dominate, the development of cellular immunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI101205-03
Application #
8795155
Study Section
Cellular and Molecular Immunology - B Study Section (CMIB)
Program Officer
Kelly, Halonna R
Project Start
2013-03-11
Project End
2018-02-28
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
3
Fiscal Year
2015
Total Cost
$349,891
Indirect Cost
$119,312
Name
University of Colorado Denver
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Kilgore, Augustus M; Welsh, Seth; Cheney, Elizabeth E et al. (2018) IL-27p28 Production by XCR1+ Dendritic Cells and Monocytes Effectively Predicts Adjuvant-Elicited CD8+ T Cell Responses. Immunohorizons 2:1-11
Homann, Dirk; Kedl, Ross M (2018) Dimensions of immunologic memory. Immunol Rev 283:5-6
Kedl, Ross M; White, Jason T (2018) Foreign antigen-independent memory-phenotype CD4+ T cells: a new player in innate immunity? Nat Rev Immunol 18:1
White, Jason T; Cross, Eric W; Kedl, Ross M (2017) Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nat Rev Immunol 17:391-400
White, Jason T; Cross, Eric W; Burchill, Matthew A et al. (2016) Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat Commun 7:11291
Pennock, Nathan D; Kedl, Justin D; Kedl, Ross M (2016) T Cell Vaccinology: Beyond the Reflection of Infectious Responses. Trends Immunol 37:170-180
Pritchard, Gretchen Harms; Cross, Eric W; Strobel, Marjorie et al. (2016) Spontaneous partial loss of the OT-I transgene. Nat Immunol 17:471
Thompson, Elizabeth A; Liang, Frank; Lindgren, Gustaf et al. (2015) Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Nonhuman Primates. J Immunol 195:1015-24
Sosinowski, Tomasz; White, Jason T; Cross, Eric W et al. (2013) CD8?+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J Immunol 190:1936-47
Pennock, Nathan D; White, Jason T; Cross, Eric W et al. (2013) T cell responses: naive to memory and everything in between. Adv Physiol Educ 37:273-83