The worldwide adoption of artemisinin (ART)-based combination therapies (ACTs) has been instrumental in halving the global burden of Plasmodium falciparum (Pf) malaria since the early 2000s; however, progress has stalled since 2015. Malaria?s impact remains vast, with an estimated 405,000 deaths in 2018. Now, Pf resistance to ART derivatives and their ACT partner drugs threatens to overwhelm control efforts. Parasites resistant to ART and piperaquine (PPQ), mediated primarily by mutations in the genes k13 and pfcrt respectively, have swept through the low-transmission setting of Southeast Asia. The development of ACT resistance in Africa, with 94% of the global malaria burden, would be calamitous. A major warning sign is the increasing prevalence of an ART resistance-conferring K13 mutant in Rwanda, and of other K13 mutations in nearby countries. Herein we confront the prospect of ACT resistance emerging in Africa.
In Aim 1, we will test the hypothesis that African Pf strains rarely pose a biological obstacle to K13 mutations driving ART resistance. By gene editing geographically diverse African strains, we will identify the most resistant mutations and assess the impact of the parasite background, which can substantially influence the levels of resistance and fitness. Having recently completed two Pf genetic crosses between Cambodian ART-resistant K13 mutants and the drug-sensitive African parasite NF54, we will map and confirm secondary ART resistance modulators. We will also test whether resistance can be attributed to loss-of-function mutations that restrict hemoglobin endocytosis in early ring stages.
In Aim 2, we will test the hypothesis that mutant K13 will exert a substantial fitness cost in African parasites, which could impede its spread in high-transmission settings. One approach will be to quantify growth rates of barcoded K13 mutant and wild-type isogenic lines. We also hypothesize that ART resistance in Asian parasites evolved via a gain of K13 mutations combined with compensatory fitness mutations, and will use our genetic cross progeny to map and confirm fitness modulators.
In Aim 3, we will pursue determinants of Pf resistance to the ACT partner drugs PPQ, lumefantrine (LMF), pyronaridine (PND) and amodiaquine (ADQ) in African parasites. Gene editing will be used to test the hypothesis that PPQ resistance can arise through single point mutations in African PfCRT haplotypes. Efforts to identify determinants of resistance to LMF and PND will employ selections with hyper- mutable African lines. We will also leverage the discovery in one of our genetic crosses of a two-component basis of ADQ resistance that includes pfcrt and an unknown determinant on chromosome 12. The identification of these markers will provide a valuable tool to screen for ADQ resistance. This proposal, which aligns with the NIAID priority of supporting research on antimicrobial drug resistance, is designed to proactively prepare for the dire possibility of ART and ACT resistance emerging in Africa by identifying causal determinants and mutations and assessing whether fitness costs can impede the spread of resistance in African transmission settings.

Public Health Relevance

The treatment of malaria is vitally dependent on artemisinin-based combination therapies (ACTs), yet their continued efficacy is threatened by the emergence and spread of drug-resistant strains of the causative agent, the parasite Plasmodium falciparum. Here we test the hypothesis that the emergence of K13 mutations in Africa will cause artemisinin resistance, but with a fitness cost that is likely to hinder its dissemination in high- transmission settings. We will also define determinants of resistance ACT partner drugs, providing molecular markers to inform regional malaria treatment and control strategies designed to mitigate the impact of multidrug resistance in Africa.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI109023-06
Application #
10220544
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
O'Neil, Michael T
Project Start
2014-08-01
Project End
2026-02-28
Budget Start
2021-03-15
Budget End
2022-02-28
Support Year
6
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Sá, Juliana M; Kaslow, Sarah R; Krause, Michael A et al. (2018) Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model. Proc Natl Acad Sci U S A 115:12513-12518
Schuh, Anna Katharina; Rahbari, Mahsa; Heimsch, Kim C et al. (2018) Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum. ACS Infect Dis 4:1601-1612
Witkowski, Benoit; Duru, Valentine; Khim, Nimol et al. (2017) A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 17:174-183
Agrawal, Sonia; Moser, Kara A; Morton, Lindsay et al. (2017) Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter With Decreased Piperaquine Sensitivity. J Infect Dis 216:468-476
Ng, Caroline L; Fidock, David A; Bogyo, Matthew (2017) Protein Degradation Systems as Antimalarial Therapeutic Targets. Trends Parasitol 33:731-743
Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González et al. (2017) Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med 9:
Dembele, L; Ang, X; Chavchich, M et al. (2017) The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Sci Rep 7:2325
O'Neill, Paul M; Amewu, Richard K; Charman, Susan A et al. (2017) A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat Commun 8:15159
Rahbari, Mahsa; Rahlfs, Stefan; Przyborski, Jude M et al. (2017) Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep 7:10449
Blasco, Benjamin; Leroy, Didier; Fidock, David A (2017) Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23:917-928

Showing the most recent 10 out of 29 publications