Influenza infection remains an enormous public health concern despite the availability of vaccines and worldwide surveillance. The high mutation rates of influenza A viruses (IAVs) enable the viruses to evade natural and vaccine-mediated immunity. Also, current anti-viral therapies do not prevent IAV-related deaths when there is a delay in initiating treatment. Thus, new therapeutic options for treating influenza disease are an immediate public health priority. Our pilot studies identify MMP-9 as an attractive IAV therapeutic target. MMP- 9 is strikingly upregulated in plasma samples from human subjects infected with seasonal and H1N1 IAV and in lungs from mice infected with H1N1 IAV. In mice, Mmp-9 increases IAV-associated mortality and late-stage lung inflammation and late-stage lung viral burdens. We proposed to test the therapeutic efficacy of a re- purposed therapeutic candidate (ADZ1236) that selectively and potently inhibits MMP-9 activity in IAV infections in two species in three integrated and highly collaborative aims.
Aim 1 will test the therapeutic efficacy of AZD1236 therapy in mice infected with BL2 H1N1 IAV. AZD1236 will be tested in mice alone and in combination with a clinically-used antiviral agent (the neuraminidase inhibitor, oseltamivir). A delayed initiation of treatment approach will be optimized to model rea-world treatment scenarios for serious IAV infections.
Aim 2 will identify the mechanisms by which Mmp-9 promotes (and AZD1236 limits) serious IAV infections in mice. We will study H1N1-infected WT vs. Mmp-9-/- mice and Mmp-9 bone marrow chimeric mice and use in vitro approaches to test our hypothesis that Mmp-9 promotes adverse outcomes in IAV disease by cleaving host or viral proteins. These Mmp-9 substrates will be identified.
Aim 3 will test the therapeutic efficacy of AZD1236 in ferrets infected with BL2 H1N1 and the BL3 highly pathogenic avian influenza (HPAI) H5N1 strain (and in H7N9 IAV-infected ferrets if this strain emerges as an epidemic or pandemic strain during the funding period). Our studies will determine whether AZD1236-mediated MMP-9 inhibition has therapeutic efficacy against IAV in both small and large animals sufficient to thereby satisfy the FDA Two Animal Rule required to demonstrate efficacy to apply for FDA approval. Successful completion of the work proposed herein may provide a first in class therapeutic intervention for serious influenza-mediated lung disease.

Public Health Relevance

Influenza infection is still an important public health concerns despite the availability of vaccines. As influenza viruses undergo high rates of mutation enabling them to evade protection from natural and vaccine-mediated immunity, new drugs are urgently needed for serious influenza infections. Herein a new class of drug will be tested for its efficacy to reduce influenza-associated mortality and morbidity in two animal species to satisfy the FDA 'Two Animal Rule'.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
7R01AI111475-02
Application #
9056295
Study Section
Special Emphasis Panel (ZAI1-AWA-M (J2))
Program Officer
Krafft, Amy
Project Start
2014-04-01
Project End
2019-03-31
Budget Start
2015-04-17
Budget End
2016-03-31
Support Year
2
Fiscal Year
2015
Total Cost
$717,682
Indirect Cost
$86,880
Name
University of Alabama Birmingham
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Brand, Jeffrey D; Lazrak, Ahmed; Trombley, John E et al. (2018) Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 3:
Polverino, Francesca; Rojas-Quintero, Joselyn; Wang, Xiaoyun et al. (2018) A Disintegrin and Metalloproteinase Domain-8: A Novel Protective Proteinase in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 198:1254-1267
Wang, Xiaoyun; Polverino, Francesca; Rojas-Quintero, Joselyn et al. (2018) A Disintegrin and A Metalloproteinase-9 (ADAM9): A Novel Proteinase Culprit with Multifarious Contributions to COPD. Am J Respir Crit Care Med :
Wan, Emily S; Li, Yan; Lao, Taotao et al. (2017) Metabolomic profiling in a Hedgehog Interacting Protein (Hhip) murine model of chronic obstructive pulmonary disease. Sci Rep 7:2504
Polverino, Francesca; Laucho-Contreras, Maria E; Petersen, Hans et al. (2017) A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 195:1464-1476
Polverino, Francesca; Laucho-Contreras, Maria; Rojas Quintero, Joselyn et al. (2016) Increased expression of A Proliferation-inducing Ligand (APRIL) in lung leukocytes and alveolar epithelial cells in COPD patients with non small cell lung cancer: a possible link between COPD and lung cancer? Multidiscip Respir Med 11:17
Laucho-Contreras, Maria E; Polverino, Francesca; Tesfaigzi, Yohannes et al. (2016) Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets 20:869-83
Cloonan, Suzanne M; Glass, Kimberly; Laucho-Contreras, Maria E et al. (2016) Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 22:163-74
Mebratu, Yohannes A; Tipper, Jennifer; Chand, Hitendra S et al. (2016) Bik Mediates Caspase-Dependent Cleavage of Viral Proteins to Promote Influenza A Virus Infection. Am J Respir Cell Mol Biol 54:664-73
Lao, Taotao; Jiang, Zhiqiang; Yun, Jeong et al. (2016) Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci U S A 113:E4681-7

Showing the most recent 10 out of 18 publications