The evolution of resistant pathogenic organisms has compromised the utility of many of the most valuable classes of antibiotics and necessitates the development of new agents to maintain our ability to combat infectious disease. Trimethoprim-sulfamethoxazole (TMP-SMX; Bactrim), discovered in the 1950s, is now one of the mainstay oral therapies for the treatment of community-acquired methicillin-resistant Staphylococcus aureus (MRSA), a clinically significant Gram-positive pathogen associated with skin and skin structure infections (SSSI). However, TMP-SMX is only effective against a narrow range of Gram-positive bacteria and does not cover other common pathogens associated with SSSI such as Streptococcus pyogenes. Additionally, there has been a steady increase in the number of TMP-SMX-resistant strains of MRSA. Both the narrow spectrum and much of the resistance are related to changes in the sequence of dihydrofolate reductase (DHFR), the target of TMP. We have been focused on the development of next-generation antifolates that are effective inhibitors of the naturally TMP-insensitive S. pyogenes as well as the wild-type and TMP-resistant MRSA. Using structure-based design, we have developed a class of antibiotics known as the propargyl-linked antifolates (PLAs) that show potent antibacterial activity against both pathogens, oral bioavailability, low levels of resistance and efficacy in a murine model of MRSA. In this proposal, we describe efforts to further refine this lead series to improve spectrum of coverage while optimizing key pharmacokinetic properties. These efforts are described in three specific aims. In the first aim, we assess the current clinical spectrum for the PLAs and study the molecular basis of TMP resistance to better inform compound optimization and selection.
The second aim describes the design, synthesis and evaluation of superior analogs against insensitive and resistant forms of the target. In the final aim, select candidate compounds are evaluated in murine infection models to determine efficacy and pharmacokinetic parameters. Through this work, we anticipate identification of several promising candidate compounds that would be attractive for further translational development.

Public Health Relevance

It is critical to continually advance therapeutic development to treat drug-resistant pathogenic organisms. We have developed a class of novel antifolates that potently inhibit methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes, two major causes of skin and soft tissue infections. In this proposal we describe efforts to further advance this class to treat antifolate-resistant strains of these multiply drug-resistant organisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI111957-02
Application #
8808734
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Xu, Zuoyu
Project Start
2014-03-01
Project End
2018-02-28
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Connecticut
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
614209054
City
Storrs-Mansfield
State
CT
Country
United States
Zip Code
Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo et al. (2017) OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design. Methods Mol Biol 1529:291-306
G-Dayanandan, Narendran; Scocchera, Eric W; Keshipeddy, Santosh et al. (2017) Direct Substitution of Arylalkynyl Carbinols Provides Access to Diverse Terminal Acetylene Building Blocks. Org Lett 19:142-145
Hoody, John; Alverson, Jeremy B; Keshipeddy, Santosh et al. (2017) Pharmaceutical analysis of a novel propargyl-linked antifolate antibiotic in the mouse. J Chromatogr B Analyt Technol Biomed Life Sci 1051:54-59
Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J et al. (2016) Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations. J Med Chem 59:6493-500
Hajian, Behnoush; Scocchera, Eric; Keshipeddy, Santosh et al. (2016) Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. PLoS One 11:e0161740
Estrada, Alexavier; Wright, Dennis L; Anderson, Amy C (2016) Antibacterial Antifolates: From Development through Resistance to the Next Generation. Cold Spring Harb Perspect Med 6:
Scocchera, Eric; Reeve, Stephanie M; Keshipeddy, Santosh et al. (2016) Charged Nonclassical Antifolates with Activity Against Gram-Positive and Gram-Negative Pathogens. ACS Med Chem Lett 7:692-6
Reeve, Stephanie M; Scocchera, Eric W; G-Dayanadan, Narendran et al. (2016) MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates. Cell Chem Biol 23:1458-1467
Reeve, Stephanie M; Gainza, Pablo; Frey, Kathleen M et al. (2015) Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci U S A 112:749-54
Keshipeddy, Santosh; Reeve, Stephanie M; Anderson, Amy C et al. (2015) Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus. J Am Chem Soc 137:8983-90

Showing the most recent 10 out of 11 publications