Schistosomiasis is a tropical parasitic disease caused by infections with flukes of the genus Schistosoma, affecting as many as 440 million individuals worldwide, with 779 million living at risk of infection. A new drug for schistosomiasis is urgently needed as praziquantel is currently the drug of last resort and the development of resistance cannot be ignored, particularly in view of its large-scale use in many endemic. Our long-term goal is to discover a new orally active single-dose antischistosomal drug with activities against all parasite stages and with a novel mechanism of action. The objective of this proposal is to identify one or more antischistosomal drug development candidates. To accomplish this objective, we will optimize four promising antischistosomal chemotypes - ozonides, aryl hydantoins, urea carboxylic acids, and N,N'-diarylureas. We propose four specific aims: 1) to synthesize and characterize target compounds; 2) to assess pharmacokinetics and antischistosomal activity of target compounds; 3) to further profile selected target compounds using more rigorous assays; and 4) to initiate mechanism of action (MOA) studies for optimized target compounds. Compound design will be informed by existing SAR and will maximize structural diversity guided by prospective in silico physicochemical profiling. Based on iterative feedback from physicochemical profiling, in vitro ADME, and cytotoxicity (SA 1), ex vivo and in vivo antischistosomal activity and in vivo ADME (SA 2 and 3), new structural hypotheses will arise, and we will synthesize additional target compounds. Target compounds will progress through the various assays using clearly defined progression criteria. We suggest that this proposed research is innovative for several reasons. First, the first three chemotypes (ozonides, aryl hydantoins, urea carboxylic acids) have proven in vivo antischistosomal efficacy, but have very low to no ex vitro (in vivo) activity, the reverse of the usual situation where lead compounds have in vitro but no in vivo activity. Thus, mechanistic investigation of these chemotypes may lead to new therapeutic approaches/drug targets for schistosomiasis. Second, for the aryl hydantoins, we outline a design strategy to decrease antiandrogenic side effects by capitalizing on negative SAR data gleaned from androgen receptor (AR) ligand binding studies to decrease, not increase, AR binding affinity. The expected outcome from this work is to identify one or more antischistosomal drug development candidates effective against all parasite stages and with a novel mechanism of action. This proposed research is significant because a new drug would be important in the chemotherapy of drug-resistant schistosomiasis and likely be valuable in integrated control programs to curb this parasitic disease.

Public Health Relevance

This proposed research is relevant to NIH's mission because it will generate new knowledge about the structure-activity-relationship and mechanism of action of four antischistosomal chemotypes. The project is relevant to public health because the discovery of a new antischistosomal drug would be important in the chemotherapy of schistosomiasis and likely be valuable in integrated control programs to curb this parasitic disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI116723-03
Application #
9208087
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
O'Neil, Michael T
Project Start
2015-02-01
Project End
2020-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
3
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Nebraska Medical Center
Department
Other Basic Sciences
Type
Schools of Pharmacy
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Wu, Jianbo; Leas, Derek A; Dong, Yuxiang et al. (2018) Synthesis of 2-Azaadamantan-6-one: A Missing Isomer. ACS Omega 3:11362-11367
Sanford, A G; Schulze, T T; Potluri, L P et al. (2018) Derivatives of a benzoquinone acyl hydrazone with activity against Toxoplasma gondii. Int J Parasitol Drugs Drug Resist 8:488-492
Wu, Jianbo; Wang, Chunkai; Häberli, Cécile et al. (2018) SAR of a new antischistosomal urea carboxylic acid. Bioorg Med Chem Lett 28:3648-3651
Sanford, A G; Schulze, T T; Potluri, L P et al. (2018) Novel Toxoplasma gondii inhibitor chemotypes. Parasitol Int 67:107-111
Leas, Derek A; Wu, Jianbo; Ezell, Edward L et al. (2018) Formation of 2-Imino Benzo[e]-1,3-oxazin-4-ones from Reactions of Salicylic Acids and Anilines with HATU: Mechanistic and Synthetic Studies. ACS Omega 3:781-787
Panic, Gordana; Ruf, Marie-Thérèse; Keiser, Jennifer (2017) Immunohistochemical Investigations of Treatment with Ro 13-3978, Praziquantel, Oxamniquine, and Mefloquine in Schistosoma mansoni-Infected Mice. Antimicrob Agents Chemother 61:
Leas, Derek A; Dong, Yuxiang; Vennerstrom, Jonathan L et al. (2017) One-Pot, Metal-Free Conversion of Anilines to Aryl Bromides and Iodides. Org Lett 19:2518-2521
Wu, Jianbo; Wang, Chunkai; Leas, Derek et al. (2017) Progress in antischistosomal N,N'-diaryl urea SAR. Bioorg Med Chem Lett :
Wang, Chunkai; Zhao, Qingjie; Vargas, Mireille et al. (2016) Revisiting the SAR of the Antischistosomal Aryl Hydantoin (Ro 13-3978). J Med Chem 59:10705-10718
McFarland, Madalyn M; Zach, Sydney J; Wang, Xiaofang et al. (2016) Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity. Antimicrob Agents Chemother 60:7017-7034

Showing the most recent 10 out of 11 publications