The overall objective of this proposal is to determine the significance of epigenetic histone post-translational modifications (PTMs) during human cytomegalovirus (HCMV) infection. HCMV is the largest known human herpes virus and it is well recognized that a large percentage of the human population (>60%) is infected with HCMV. HCMV infections cause birth defects; and for immunocompromised populations, these infections are often times life threatening. Upon infection of cells and chromatinization of the virus in the host nucleus, the major immediate-early promoter (MIEP) controls the expression of the viral IE1 and IE2 proteins which interact with many nuclear proteins. These interactions ultimately modulate both viral and cellular gene expression, in part through epigenetic mechanisms. Epigenetics refers to mechanisms that can regulate gene expression patterns without involving changes in DNA sequence, and include DNA methylation, small ncRNAs and histone PTMs. The limited picture of how HCMV harnesses epigenetic mechanisms presents a significant barrier to understanding HCMV pathogenesis and developing novel antiviral therapy to target these chromatin factors. Previously, we determined that HCMV infection results in several changes to single PTM sites on histones, and that one modification site in particular H3K79me2 and its corresponding enzyme DOT1L affected HCMV growth. Here we aim to answer the following questions: How does HCMV utilize combinatorial PTMs on histones for controlling both host and viral gene expression patterns and viral replication? Are there any non- histone chromatin proteins that are needed for viral growth? As certain protein lysine methyltransferases are upregulated during HCMV infection, are there other non-histone proteins methylated during infection that are needed for viral replication? We will address these questions using a combination of biological and quantitative methods. We will develop enhanced mass spectrometry methods to quantify combinatorial histone H3 and H4 PTMs from MRC5 cells during an HCMV infection time-course. Genome-wide approaches will be employed to identify both host and viral genes harboring significant combinatorial PTMs. The effect of depleting the enzymes responsible for the most abundant combinatorial PTM changes on both host and viral gene expression, and on viral growth and replication will be assessed. Using biochemical and affinity approaches, we will isolate both global viral chromatin and MIEP specific viral chromatin to determine the chromatin factors that contribute to regulation of viral gene transcription. Lastl, we will use our novel affinity quantitative proteomics approach to identify non-histone proteins that are lysine methylated during viral infection. It is expected that these experiments will produce new fundamental insights in an understudied area of HCMV biology, and could lead to development of new epigenetic drug therapy for treatment of HCMV.

Public Health Relevance

Viruses have adapted to evade host immune defenses, and target several areas of cellular signaling to maximize replication. This research will help define the epigenetic changes that occur in response to viral infection, thus laying down the foundation for potential development of novel epigenetic drug targeted antiviral therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI118891-04
Application #
9454249
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Beisel, Christopher E
Project Start
2015-04-15
Project End
2020-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Biochemistry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Friedman, Elliot S; Bittinger, Kyle; Esipova, Tatiana V et al. (2018) Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci U S A 115:4170-4175
Zhang, Hanghang; Pandey, Somnath; Travers, Meghan et al. (2018) Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell 175:1244-1258.e26
Kreher, Jeremy; Takasaki, Teruaki; Cockrum, Chad et al. (2018) Distinct Roles of Two Histone Methyltransferases in Transmitting H3K36me3-Based Epigenetic Memory Across Generations in Caenorhabditis elegans. Genetics 210:969-982
Karch, Kelly R; Coradin, Mariel; Zandarashvili, Levani et al. (2018) Hydrogen-Deuterium Exchange Coupled to Top- and Middle-Down Mass Spectrometry Reveals Histone Tail Dynamics before and after Nucleosome Assembly. Structure 26:1651-1663.e3
Simithy, Johayra; Sidoli, Simone; Garcia, Benjamin A (2018) Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 18:e1700309
Grevet, Jeremy D; Lan, Xianjiang; Hamagami, Nicole et al. (2018) Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 361:285-290
Guo, Qi; Sidoli, Simone; Garcia, Benjamin A et al. (2018) Assessment of Quantification Precision of Histone Post-Translational Modifications by Using an Ion Trap and down To 50?000 Cells as Starting Material. J Proteome Res 17:234-242
Weiner, Amber K; Sidoli, Simone; Diskin, Sharon J et al. (2018) Graphical Interpretation and Analysis of Proteins and their Ontologies (GiaPronto): A One-Click Graph Visualization Software for Proteomics Data Sets. Mol Cell Proteomics 17:1426-1431
Greer, Sylvester M; Sidoli, Simone; Coradin, Mariel et al. (2018) Extensive Characterization of Heavily Modified Histone Tails by 193 nm Ultraviolet Photodissociation Mass Spectrometry via a Middle-Down Strategy. Anal Chem 90:10425-10433
Woll, Kellie A; Guzik-Lendrum, Stephanie; Bensel, Brandon M et al. (2018) An allosteric propofol-binding site in kinesin disrupts kinesin-mediated processive movement on microtubules. J Biol Chem 293:11283-11295

Showing the most recent 10 out of 47 publications