A person, usually a child, dies of rabies every nine minutes globally. Current rabies virus (RABV) post- exposure prophylaxis (PEP) remains complicated and costly, requiring four to five doses of inactivated RABV- based vaccine plus rabies immune globulin (RIG). A single-dose vaccine that does not require expensive and often unavailable RIG would greatly increase the efficacy of RABV vaccination, reduce the cost associated with rabies prevention, and save lives. However, there is a gap in our understanding of how B cells are activated in response to RABV-based vaccination. For the last 35 years, B cells secreting IgG (but not IgM) were thought to be solely responsible for vaccine-induced protection against RABV infection via T cell-dependent responses in post-exposure settings. Furthermore, mechanisms by which B cells acquire RABV antigen were not previously known. Our laboratory has begun to unravel key attributes of rabies-specific B cell responses that contribute to the rapid induction of vaccine-induced virus neutralizing antibodies (VNAs). We showed that vaccine-induced T cell-independent (TI) and early extrafollicular T cell-dependent (TD) B cell responses, including neutralizing IgM, can limit dissemination of pathogenic RABV into the CNS, providing partial protection in mice. We also showed that free rabies particles migrate to subcapsular sinus macrophages in the draining lymph node, transferring RABV antigen directly to B cells.
We aim to exploit these findings to develop a single-dose RABV vaccine regimen. Specifically, we hypothesize that a replication-deficient, matrix gene-deleted RABV-based vaccine (RABV-?M) with enhanced tropism to follicular B cells will result in antigen-specific B cells rapidly differentiating into IgM and IgG plasma cells, thereby increasing the kinetics, magnitude and quality of early B cell responses. In this proposal, our goals are to clone, recover and characterize RABV-?M-based vaccines with enhanced tropism to follicular B cells. Next, the new vaccines will be tested in well-described mouse models of rabies immunogenicity and post-exposure protection. Finally, we will confirm that the genetic modifications introduced into RABV-?M do not adversely affect safety and stability. In addition to expanding our knowledge of RABV immunity, key insights will be gained regarding how viral vaccines interact with and activate follicular B cells to induce rapid and potent immunity against viral infections. The major milestone at the completion of this project is the identification of a safe vaccination regimen that induces potent and rapid TI and extrafollicular TD B cell responses more effectively than the multi-dose human rabies vaccine, without the need for RIG. In summary, single-dose vaccine strategies capable of eliciting rapid and robust B cell responses will improve the efficacy of human rabies vaccines, reduce the cost associated with rabies prevention and save lives.

Public Health Relevance

Over two-thirds of the world's population live in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis and over 59,000 deaths per year globally. The development of single-dose rabies vaccine capable of eliciting rapid and robust neutralizing antibody responses will improve the efficacy of human rabies prevention world-wide, reduce costs associated with rabies prevention and potentially save lives. This project builds on our previously published data demonstrating early events in B cell activation can be exploited to improve RABV-based vaccination.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI123272-05
Application #
10054163
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Park, Eun-Chung
Project Start
2016-11-22
Project End
2021-10-31
Budget Start
2020-11-01
Budget End
2021-10-31
Support Year
5
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Thomas Jefferson University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha et al. (2017) Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis. J Virol 91:
Haley, Shannon L; Tzvetkov, Evgeni P; Lytle, Andrew G et al. (2017) APRIL:TACI axis is dispensable for the immune response to rabies vaccination. Antiviral Res 144:130-137