The percent of Gram-negative bacterial infections that are resistant to common antibiotics has increased at an alarming rate over the last decade, and there is now an acute need for the discovery of novel antibiotics effective against multidrug-resistant Gram-negative pathogens. The standard method of antibacterial discovery ? whole- cell screening of compound collections ? has met with repeated failure for Gram-negatives, and these failures have been traced to the fact that very few compounds in standard collections can penetrate the Gram-negative cell membranes and accumulate in these pathogens. Unfortunately, there has been scant information about the types of compounds that are competent for accumulation in Gram-negatives. Excitingly, we recently assessed a unique collection of >180 diverse compounds for their ability to accumulate in E. coli, trained a random forest classification model to analyze the results, and from this data we identified physicochemical properties important for accumulation and developed predictive guidelines for compound accumulation in E. coli. We then showed the utility of these guidelines by converting a Gram-positive-only antibiotic into a broad-spectrum agent. We now propose to develop tools that will allow us to fully define the physicochemical traits that enable compounds accumulation in three of the most concerning Gram-negative bacteria, carbapenem-resistant Enterobacteriaceae (CRE), drug-resistant Acinetobacter, and drug-resistant P. aeruginosa (to be referred to collectively as EAP pathogens). Specifically, we seek to develop novel tools in the area of chemical probes (compound collections), bacterial strains, and computational models. Using these tools in conjunction with our well-validated compound accumulation assay, we intend to define the physicochemical traits needed for compound accumulation in the EAP pathogens, including assessment of the influence of porins and efflux pumps, and the relative contribution of the outer and inner-membranes to blocking compound penetrance. Our predictive guidelines will be utilized to convert several high-value Gram-positive-only compounds into broad- spectrum antibiotics.

Public Health Relevance

It has been 50 years since the approval of a new class of drugs effective against Gram-negative bacteria, and as such, there are now limited treatment options for drug-resistant Gram-negative infections. This paucity of drugs can be directly traced to the lack of understanding about the types of compounds that can accumulate inside these bacteria. Herein we propose a comprehensive and systematic plan to develop predictive guidelines for compound accumulation in the most problematic drug-resistant Gram-negative bacteria pathogens, and to use this information to develop general strategies to convert Gram-positive-only compounds into broad-spectrum antibiotics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI136773-04
Application #
10087862
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Xu, Zuoyu
Project Start
2018-02-06
Project End
2023-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
4
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Genetics
Type
Organized Research Units
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Drown, Bryon S; Hergenrother, Paul J (2018) Going on offense against the gram-negative defense. Proc Natl Acad Sci U S A 115:6530-6532