Infection following joint arthroplasty is a devastating complication with immense financial and psychological costs. Effective countermeasures to prevent osteolysis and infection include the use of body exhaust systems, laminar airflow and prophylactic antibiotics. Despite these measures, deep infection still occurs in 1-5 percent of joint replacements. The goal of this project is to engineer a """"""""smart"""""""" prosthesis that addresses these problems. The scope of this highly integrated research requires collaboration across traditional academic boundaries. The proposed study will be spearheaded by investigators at two leading academic centers with strong emphasis on bioengineering, dental and orthopaedic research. The first objective will be to engineer a Ti surface that is osteogenic due to the presence of the adhesion peptide RGD. The broad spectrum antibiotic tigecyclin will be tethered to the metal using the adhesion peptide stem to yield a surface that is both osteogenic and anti-bacterial We will measure the efficacy of the tigecyclin against a bacterial infection and determine the osteogenic potential of the tethered RGD peptide.
In Specific Aim 2, a sol-gel film will be generated on the modified Ti surface that will release antibiotics and BMP-2. The osteogenic response and the release of the antibiotic linezolid from the sol-gel will be determined.
In Specific Aim 3, we will engineer a prosthesis using these modified surfaces for in vivo testing in a dog hip infected with S. aureus. Immunogenicity, infection eradication, and bone formation/osseointegration will be evaluated. Following twelve weeks of recovery, femora will be recovered and analyzed using physical, optical, and histological techniques. Outcomes from this study will provide information for engineering of orthopaedic and dental implants that can be tested at the clinical level.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
3R01AR051303-03S1
Application #
7572444
Study Section
Special Emphasis Panel (ZRG1-MOSS-G (52))
Program Officer
Panagis, James S
Project Start
2005-09-22
Project End
2010-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
3
Fiscal Year
2008
Total Cost
$52,842
Indirect Cost
Name
Thomas Jefferson University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus et al. (2018) Cold Plasmas for Biofilm Control: Opportunities and Challenges. Trends Biotechnol 36:627-638
Hickok, N J; Shapiro, I M; Chen, A F (2018) The Impact of Incorporating Antimicrobials into Implant Surfaces. J Dent Res 97:14-22
Nguyen, Ly; Lu, Peng; Boehm, Daniela et al. (2018) Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review. Biol Chem 400:77-86
Chen, Chang-Po; Jing, Rui-Yan; Wickstrom, Eric (2017) Covalent Attachment of Daptomycin to Ti6Al4V Alloy Surfaces by a Thioether Linkage to Inhibit Colonization by Staphylococcus aureus. ACS Omega 2:1645-1652
Davidson, Helen; Poon, Martin; Saunders, Ray et al. (2015) Tetracycline tethered to titanium inhibits colonization by Gram-negative bacteria. J Biomed Mater Res B Appl Biomater 103:1381-9
Radin, Shula; Bhattacharyya, Sanjib; Ducheyne, Paul (2013) Nanostructural control of the release of macromolecules from silica sol-gels. Acta Biomater 9:7987-95
Hickok, Noreen J; Shapiro, Irving M (2012) Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev 64:1165-76
Shapiro, I M; Hickok, N J; Parvizi, J et al. (2012) Molecular engineering of an orthopaedic implant: from bench to bedside. Eur Cell Mater 23:362-70
Ketonis, Constantinos; Barr, Stephanie; Shapiro, Irving M et al. (2011) Antibacterial activity of bone allografts: comparison of a new vancomycin-tethered allograft with allograft loaded with adsorbed vancomycin. Bone 48:631-8
Lee, Hyun-Su; Eckmann, David M; Lee, Daeyeon et al. (2011) Symmetric pH-dependent swelling and antibacterial properties of chitosan brushes. Langmuir 27:12458-65

Showing the most recent 10 out of 25 publications