During the previous cycle of this RO1 grant, we have discovered an essential role of the SWI/SNF chromatin- remodeling sub-unit BAF60C in signal-mediated activation of muscle gene expression in muscle progenitors (Forcales et al. 2012, EMBO J) and hESCs (Albini et al. 2013 Cell Rep). We found that transcriptional repression of BAF60C prevents direct differentiation of hESC into skeletal muscle, and de-repression by developmental signals during embryoid body (EB) formation (Cai et al. 2013, Genes Dev) coincides with the competence of mesodermal cells to adopt the skeletal and cardiac myogenic lineage. This knowledge was instrumental to establish an efficient protocol of hESC direct conversion into skeletal muscles, based on the ectopic, sequential expression of BAF60C and MyoD. Under defined culture conditions BAF60C- and MyoD- expressing hESC form 3D contractile myospheres, which recapitulate biological features of human muscles and can be used as miniaturized muscles when derived from hiPSCs (Albini and Puri JoVE 2013). In this grant renewal application we will capitalize on these discoveries to move forward in two interconnected directions: we will exploit BAF60C/MyoD-directed conversion of hESC and hiPSC to elucidate the mechanism by which BAF60C pre-sets the epigenetic landscape conducive for MyoD-mediated activation of skeletal myogenesis in hESCs (Aim 1 - Identification of muscle enhancers and mapping nucleosome topography generated by BAF60C and MyoD in hESCs) and in hiPSC (Aim 2 - MyoD chromatin binding and nucleosome mapping in hiPSC-derived muscles). We will use the knowledge gained from Aims 1 and 2 to identify long-distance interactions established within the epigenetic landscape of hiPSC-derived muscle cells (Aim 3 - Mapping topological domains generated by during myogenic conversion of human fibroblasts and in hiPSC derivatives) and their dependence on dystrophin signalling (Aim 4 - Role of dystrophin signalling in the control of the epigenetic landscape of myospheres). As such, this application will apply state-of-art technologies to a recently developed model of stem cell-derived skeletal muscles, to investigate the determinants of the epigenetic landscape that forms during human skeletal myogenesis. We will use this knowledge to infer the role of dystrophin in the regulation of muscle epigenome during development and after contractile activity, by TALEN-mediated ablation of dystrophin. Thus, this study can shed light on a previously unrecognized link between genetic and epigenetic determinants of Duchenne Muscular Dystrophy (DMD) pathogenesis and will identify epigenetic signatures of disease history. Our study will also provide the rationale for the use of epigenetic drugs to restore the nuclear landscape of dystrophic muscles in the treatment of DMD. As dystrophin is ubiquitously expressed, and because DMD patients present extra-muscular pathology (i.e. cardiac dysfunction) that complicates disease progression and treatment, this study will open new perspectives in the interpretation of DMD pathogenesis and therapy.

Public Health Relevance

In this project we will apply state-of-art technologies to a model of stem cell-derived skeletal muscles from hiPSCs that has been recently developed in Puri lab to reveal the mechanism that leads to the formation of the epigenetic landscape during human skeletal myogenesis and investigate relationship between dystrophin signaling and the dynamic modulation of the epigenetic landscape. As such, this study might reveal the contribution of epigenetic alterations to the pathogenesis of DMD and potential epigenetic signatures of disease history. Once extended to other diseases, the conceptual outputs from this study can help to understand the relationship between the primary gene mutations and the epigenetic pathogenesis of human genetic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR056712-10
Application #
9536441
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Boyce, Amanda T
Project Start
2008-12-01
Project End
2019-07-31
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
10
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Sanford Burnham Prebys Medical Discovery Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Madaro, Luca; Passafaro, Magda; Sala, David et al. (2018) Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 20:917-927
Sartorelli, Vittorio; Puri, Pier Lorenzo (2018) Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 71:375-388
Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco et al. (2018) HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 8:3448
Consalvi, Silvia; Brancaccio, Arianna; Dall'Agnese, Alessandra et al. (2017) Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38? activation. Nat Commun 8:13956
Cunningham, Thomas J; Yu, Michael S; McKeithan, Wesley L et al. (2017) Id genes are essential for early heart formation. Genes Dev 31:1325-1338
Cui, Huanhuan; Bansal, Vikas; Grunert, Marcel et al. (2017) Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS One 12:e0179464
Roberts, Thomas C; Etxaniz, Usue; Dall'Agnese, Alessandra et al. (2017) BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Sci Rep 7:6153
Latella, Lucia; Dall'Agnese, Alessandra; Boscolo, Francesca Sesillo et al. (2017) DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes Dev 31:648-659
Fiacco, E; Castagnetti, F; Bianconi, V et al. (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23:1839-1849
Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca et al. (2016) TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. Elife 5:

Showing the most recent 10 out of 29 publications