Recent advances in high-resolution imaging have permitted the development of new tools, notably micro- magnetic resonance (5MR) imaging and high-resolution peripheral quantitative computed tomography (HR- pQCT), that promise to provide a better profile of overall bone strength beyond areal bone mineral density (aBMD) by dual-energy x-ray absorptiometry (DXA). In this application, we seek to determine whether image- based microstructural and 5FE analyses can distinguish between individuals who have vertebral fractures from their counterparts without vertebral fractures. In the proposed project we advance the following hypotheses: 1. Morphological measurements and 5FE predictions of stiffness and failure load of the distal tibia and radius from ex vivo 5MRI and HR-pQCT correlate highly with those from 5CT and direct mechanical testing, and, furthermore, that parameters from the two peripheral sites parallel those in the vertebrae. 2. 5FE-derived estimates of elastic stiffness and failure load from in vivo 5MR and HR-pQCT images can differentiate between individuals with vertebral fractures from those without vertebral fractures better than microstructural measures derived by the two imaging modalities alone or aBMD by DXA. We plan to address the above hypotheses with the following specific aims:
Specific Aim 1 a: Perform 5MRI and HR-pQCT scans of the distal tibia and radius ex vivo under signal-to-noise and resolution conditions achievable in vivo, and compare trabecular and cortical bone microstructural measurements obtained in this manner with those from high-resolution 5CT.
Specific Aim 1 b: Compare the stiffness and failure load of whole bone segments of the distal tibia and radius as predicted by HR-pQCT and 5MR image-based nonlinear 5FE analyses to those predicted by 5CT image- based 5FE analysis and direct mechanical testing.
Specific Aim 2 a: Perform 5CT scans of lumbar vertebrae from the same subjects as the distal tibia and radius used in Aims 1a and 1b Specific Aim 2b: Compare trabecular and cortical bone microstructural measurements and 5FE predictions based on the imaging data obtained by HR-pQCT and 5MRI in Aims 1a and 1b with the 5CT measurements and direct mechanical testing of the corresponding vertebrae in Aim 2a.
Specific Aim 3 a: Apply the microstructural and 5FE techniques validated in Aims 1 and 2 to in vivo 5MRI and HR-pQCT scans from healthy women and compare these measurements between the two imaging modalities.
Specific Aim 3 b: Apply the microstructural and 5FE techniques validated in Aims 1 and 2 to the two peripheral imaging modalities and determine the effectiveness of methods in distinguishing between vertebral fracture subjects and their non-fractured peers using data from two imaging studies previously performed or currently in progress in the investigators'laboratories.

Public Health Relevance

High-resolution peripheral quantitative computed tomography (HR-pQCT) and micro magnetic resonance imaging (5MRI), which are state-of-the-art clinical high-resolution imaging modalities for the skeleton, will be validated for the determination of mechanical competence and prediction of vertebral fractures. This research will test the feasibility and establish the standard of high-resolution skeletal imaging in assessing bone health beyond the areal bone mineral density measurements obtained by dual-energy x-ray absorptiometry (DXA).

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR058004-04
Application #
8463123
Study Section
Special Emphasis Panel (ZRG1-MOSS-F (03))
Program Officer
Lester, Gayle E
Project Start
2010-07-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
4
Fiscal Year
2013
Total Cost
$581,318
Indirect Cost
$146,784
Name
Columbia University (N.Y.)
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Zhou, Bin; Wang, Ji; Yu, Y Eric et al. (2016) High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: Ex vivo computational and experimental validations. Bone 86:58-67
Zhou, Bin; Zhang, Zhendong; Wang, Ji et al. (2016) In Vivo Precision of Digital Topological Skeletonization Based Individual Trabecula Segmentation (ITS) Analysis of Trabecular Microstructure at the Distal Radius and Tibia by HR-pQCT. Pattern Recognit Lett 76:83-89
Wang, Ji; Stein, Emily M; Zhou, Bin et al. (2016) Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures. Bone 88:39-46
Boutroy, Stephanie; Khosla, Sundeep; Sornay-Rendu, Elisabeth et al. (2016) Microarchitecture and Peripheral BMD are Impaired in Postmenopausal White Women With Fracture Independently of Total Hip T-Score: An International Multicenter Study. J Bone Miner Res 31:1158-66
Wang, Ji; Kazakia, Galateia J; Zhou, Bin et al. (2015) Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone. J Bone Miner Res 30:1641-50
Jepsen, Karl J; Silva, Matthew J; Vashishth, Deepak et al. (2015) Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res 30:951-66
Wang, Ji; Zhou, Bin; Liu, X Sherry et al. (2015) Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 72:71-80
Sutter, Stephanie; Nishiyama, Kyle K; Kepley, Anna et al. (2014) Abnormalities in cortical bone, trabecular plates, and stiffness in postmenopausal women treated with glucocorticoids. J Clin Endocrinol Metab 99:4231-40
Zhou, Bin; Liu, X Sherry; Wang, Ji et al. (2014) Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech 47:702-8
Wang, Hong; Ji, Baohua; Liu, X Sherry et al. (2014) Osteocyte-viability-based simulations of trabecular bone loss and recovery in disuse and reloading. Biomech Model Mechanobiol 13:153-66

Showing the most recent 10 out of 24 publications