Pax3 is a key regulator of developmental and postnatal myogenesis. However, the specific role of Pax3 in the regulation of adult muscle stem cell (satellite cell (SC)) function remains poorly understood. In the melanocyte lineages, Pax3 is known to be a nodal regulator, simultaneously activating a determination program, thereby maintaining the lineage identity of the progenitor, while preventing terminal differentiation. Based on preliminary studies, we hypothesize that Pax3 plays a similar role in the myogenic lineage of SCs. For such a critical regulator, control of expression is essential such that the transition between committed progenitors to more differentiated progeny is orchestrated in a precise temporal fashion. As such, Pax3 levels are controlled post-transcriptionally by regulation of protein stability as we have shown previously. In more recent studies, we found that Pax3 is also regulated by a microRNA, miR-206, to control transcript levels during SC activation. Even more intriguingly, we found that different subsets of SCs choose different polyadenylation signals when transcribing Pax3, resulting in SCs with Pax3 transcripts that contain miR-206 target sites and other SCs with Pax3 transcripts that contain no miR-206 target sites. The latter are therefore resistant to regulation by miR-206 and express high levels of Pax3 in the quiescent state. We will build upon these observations and preliminary data to explore in more detail the function and regulation of Pax3 during SC activation. As such, the Specific Aims of this proposal are (1) to explore the role of Pax3 as a nodal regulator of adult SCs and their progeny; (2) to examine the regulation of Pax3 levels by miR-206; and (3) to study the role of alternate polyadenylation signal selection in determining the ability of miR-206 to regulate Pax3 levels. Together, these studies will greatly expand our understanding of the role of Pax3 in postnatal myogenesis.

Public Health Relevance

The ability of tissues within the body to repair themselves after an injury or in response to degenerative disease processes is due to the presence of stem cells in those various tissues. In skeletal muscle, stem cells remain in a 'quiescent state', in reserve to be called upon if any injury occurs. A major focus of our research is to understand the molecules that signal to those quiescent stem cells to begin the process of tissue repair, and the signals within those cells that control when they begin to divide, how many times they divide, and how to make mature muscle and not some other tissue. One of the key molecules within muscle stem cells that controls many of these processes is Pax3. In the studies of this proposal, we will study how the level of Pax3 is regulated and which cellular functions are controlled by Pax3 when it is produced. Overall, these studies will lead to a better understanding of the regulation of muscle stem cell function and to potential ways to improve muscle repair in the setting of degenerative diseases like muscular dystrophies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR062185-05
Application #
8914348
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Boyce, Amanda T
Project Start
2011-09-19
Project End
2016-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
5
Fiscal Year
2015
Total Cost
$312,750
Indirect Cost
$87,750
Name
Palo Alto Veterans Institute for Research
Department
Type
DUNS #
624218814
City
Palo Alto
State
CA
Country
United States
Zip Code
94304
Paulk, Nicole K; Pekrun, Katja; Charville, Gregory W et al. (2018) Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle. Mol Ther Methods Clin Dev 10:144-155
Tang, Huibin; L Kennedy, Catherine; Lee, Myung et al. (2017) Smad3 initiates oxidative stress and proteolysis that underlies diaphragm dysfunction during mechanical ventilation. Sci Rep 7:14530
Rodgers, Joseph T; Schroeder, Matthew D; Ma, Chanthia et al. (2017) HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into GAlert. Cell Rep 19:479-486
de Morrée, Antoine; van Velthoven, Cindy T J; Gan, Qiang et al. (2017) Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A 114:E8996-E9005
Luo, Dan; de Morree, Antoine; Boutet, Stephane et al. (2017) Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A 114:E3071-E3080
Quarta, Marco; Cromie, Melinda; Chacon, Robert et al. (2017) Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun 8:15613
Du, Hongqing; Shih, Chung-Hsuan; Wosczyna, Michael N et al. (2017) Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat Commun 8:669
Mueller, Alisa A; van Velthoven, Cindy T; Fukumoto, Kathryn D et al. (2016) Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature 540:276-279
Liu, Ling; Rando, Thomas A (2016) UTX in muscle regeneration--the right dose and the right time. J Clin Invest 126:1233-5
Quarta, Marco; Brett, Jamie O; DiMarco, Rebecca et al. (2016) An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 34:752-9

Showing the most recent 10 out of 33 publications