Cytokines constitute a vast and complex network of molecules involved in almost every aspect of the immune system. Among these, IL-7 has emerged as a major T cell trophic cytokine affecting survival and homeostasis of T cells, processes that are highly disturbed in lupus-associated systemic autoimmunity. Consequently, we have made a concerted effort to define the role of IL-7 in the pathogenesis of this disease in mouse models. Our published and preliminary findings showed that blockade of IL-7R signaling effectively reduces disease severity in both murine lupus and EAE. Brief application of this treatment preferentially eliminated autoreactive T cells undergoing activation and, strikingly, additional studies showed that IL-7 provides a third signal beyond TCR and constimulatory receptor engagement to enhance activation and proliferation of low-affinity autoreactive T cells. Moreover, lymphadenopathy in murine lupus was associated with expansion of IL-7-producing lymphoid stromal cells, specifically fibroblastic reticular cells (FRCs). Accordingly, in this proposal, Specific Aim 1 will address the biochemical basis for IL-7-mediated enhancement of T cell activation, proliferation, survival, and metabolic status, while Specific Aim 2 will investigae the location and frequency of cellular sources of IL-7 in secondary lymphoid organs, the influence of inflammation-promoting TLRs and type I IFNs on IL-7 production and transcriptional status of these cells, and disease-modifying effects of genetic modifications that ablate IL-7 production by stromal and lymphatic endothelial cells (LECs). These biologic and mechanistic studies on IL-7 and its cellular producers will reveal novel aspects of autoimmune disease pathogenesis and may identify new therapeutic targets for intervention.
A large family of soluble molecules, defined as cytokines, mediates both normal and abnormal immune responses. Among them, IL-7 plays a significant role in the survival of T cells, but when hyperproduced, it might contribute to autoimmune disease pathology, including lupus. Further understanding of the biology of this cytokine and its essential role in driving proliferation of autoreactive T cells could lead to the development of novel treatments for this and other autoimmune diseases.
Theofilopoulos, Argyrios N; Kono, Dwight H; Baccala, Roberto (2017) The multiple pathways to autoimmunity. Nat Immunol 18:716-724 |
Wang, Rongsheng E; Wang, Ying; Zhang, Yuhan et al. (2016) Rational design of a Kv1.3 channel-blocking antibody as a selective immunosuppressant. Proc Natl Acad Sci U S A 113:11501-11506 |
Han, Kyung Ho; Gonzalez-Quintial, Rosana; Peng, Yingjie et al. (2016) An agonist antibody that blocks autoimmunity by inducing anti-inflammatory macrophages. FASEB J 30:738-47 |
Lawson, Brian R; Gonzalez-Quintial, Rosana; Eleftheriadis, Theodoros et al. (2015) Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation. Clin Immunol 161:260-9 |
Kono, Dwight H; Baccala, Roberto; Theofilopoulos, Argyrios N (2013) TLRs and interferons: a central paradigm in autoimmunity. Curr Opin Immunol 25:720-7 |
Theofilopoulos, Argyrios N; Gonzalez-Quintial, Rosana; Lawson, Brian R et al. (2010) Sensors of the innate immune system: their link to rheumatic diseases. Nat Rev Rheumatol 6:146-56 |