Skeletal muscle injury-repair and regeneration is a multi-cellular process that involves repair of acute injury to the sarcolemma, mobilization of satellite cells to replace the lost-muscle fibers, and control of fibrotic remodeling for maintenance of muscle integrity. In muscular dystrophy, compromised sarcolemma integrity or membrane repair triggers the cascade of muscle degeneration that incurs progressive, severe morbidity and ultimately mortality. Developing therapeutic approaches to improve sarcolemma integrity while facilitating regeneration of injured muscle fibers remain a major challenge in muscle physiology research. This project builds on the discovery of MG53, a member of the TRIM-family protein, as an essential component of the cell membrane repair machinery. MG53 functions in vesicle trafficking and facilitates the nucleation of intracellular vesicles to sites of membrane disruption for repair patch formation. Native MG53 is present in blood circulation, at levels directly correlating with injury or secretory activity of the muscle. Administration of recombinant human MG53 (rhMG53) protein protects muscle fibers and stem cells from injury, and reduces muscle fibrosis in the mdx mouse model. Our research with MG53 over the past few years has established a potential tri-functional role for MG53 in muscle injury-regeneration, as a facilitator to repair acute sarcolemma injury, a contributor to activate satellite cells during the early phase of muscle injury, and a modulator of fibrosis by controlling fibroblast differentiation associated with chronic muscle injury. We envision that targeting the tri-functional role of MG53 will have advantage over the current paradigms for treating muscular dystrophy.
In Aim 1, we will determine the pathways that transduce the newly identified myokine function of MG53 into activation of satellite cells in response to acute muscle injury; define the mechanisms that underlie MG53?s function in regulating fibrosis during chronic muscle injury; and test if non-invasive interventions can modulate circulating MG53 levels toward muscle injury-regeneration. If circulating MG53 plays a role in satellite cell activation, we predict that ischemia-preconditioning that releases MG53 without muscle injury, or inducible secretion of MG53 from a transgenic mouse model, will effectively activate satellite cells and muscle regeneration following injury.
In Aim 2, we will evaluate the safety and efficacy for sustained elevation of MG53 in circulation to preserve muscle integrity/satellite cell activation/fibrosis control in animal models of muscular dystrophy. Fulfillment of the studies in this project will advance the biology of MG53 in muscle injury-repair and regeneration, and lay the foundation for our translational approach for targeting MG53 function for treatment of muscular dystrophy.

Public Health Relevance

Development of a therapeutic approach to facilitate muscle injury-repair and regeneration represents an important area of biomedical and clinical research. Studies outlined in this proposal aim to define the function of a novel cell membrane repair gene in muscle physiology and disease, with the goal to translate the basic biology findings into potential treatment of muscular dystrophy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR070752-03
Application #
9687657
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Boyce, Amanda T
Project Start
2017-04-15
Project End
2022-03-31
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Ohio State University
Department
Surgery
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Ogunbayo, Oluseye A; Duan, Jingxian; Xiong, Jian et al. (2018) mTORC1 controls lysosomal Ca2+ release through the two-pore channel TPC2. Sci Signal 11:
Fan, Zhaobo; Xu, Zhaobin; Niu, Hong et al. (2018) An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction. Sci Rep 8:1371
Wang, Zhen; Chen, Ken; Han, Yu et al. (2018) Irisin Protects Heart Against Ischemia-Reperfusion Injury Through a SOD2-Dependent Mitochondria Mechanism. J Cardiovasc Pharmacol 72:259-269
Lin, Pei-Hui; Sermersheim, Matthew; Li, Haichang et al. (2017) Zinc in Wound Healing Modulation. Nutrients 10:
Chen, Ken; Xu, Zaicheng; Liu, Yukai et al. (2017) Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med 9:
Zhang, Caimei; Chen, Biyi; Wang, Yihui et al. (2017) MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress. J Mol Cell Cardiol 112:123-130
Yue, Tao; Park, Ki Ho; Reese, Benjamin E et al. (2016) Quantifying Drug-Induced Nanomechanics and Mechanical Effects to Single Cardiomyocytes for Optimal Drug Administration To Minimize Cardiotoxicity. Langmuir 32:1909-19
Xu, Yanyi; Patnaik, Sourav; Guo, Xiaolei et al. (2014) Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater 10:3449-62