Fenugreek (Trigonella foenum-graecum) is used in many parts of the world for diabetes, cardiovascular disease, and depression. While the mechanism(s) of these actions is not known, it is becoming increasingly clear that gut microbiota are key players in homeostasis and also mediate true first-pass metabolism of dietary compounds. Furthermore, the high protein and fiber content of fenugreek seeds is particularly suited to modify intestinal bacteria and offset the dysbiotic effects of high fat/low fiber Western-style diets. Indeed, data from our lab shows that fenugreek significantly alters intestinal microbial populations, and reverses key Western diet- induced changes to gut microbiota. Based on these observations, we propose the following hypothesis: Fenugreek induces physiologic resiliency via changes to intestinal microbiota Our hypothesis is based on the ability of fenugreek to offset diet-induced gut dysbiosis, and on data showing that fenugreek-shaped microbiota can replicate selected effects of fenugreek. While these data support a role for gut bacteria in beneficial responses to fenugreek, key data are needed to confirm and identify mechanisms by which fenugreek-microbiota interactions drive physiologic benefits. First, the impact of gut microbiota on the beneficial profile of fenugreek needs to be established. Further, whether fenugreek-microbiota interactions alter the gut metabolome directly via unmasking/generation of otherwise-inaccessible botanical phytochemicals; or indirectly via altered metabolism of Western diets should be resolved. Finally, identification of intestinal and blood-based metabolites that mediate fenugreek-based physiologic resiliency is needed to accelerate the translation of these findings. To meet these needs, we have devised a unique experimental approach combining conventional and germ-free mice, an adaptive microbiome transplantation paradigm, and a series of cutting-edge in silico analyses to identify microbiome-derived, fenugreek-based metabolites that drive physiologic resiliency.
Specific aim 1 conventionally-housed and germ-free mice to determine how intestinal microbiota shape the beneficial effects of fenugreek.
Aim 2 will use microbiome transplants to determine if specific microbiota are both necessary and sufficient for the beneficial effects of fenugreek, and will determine if fenugreek-microbiota interactions alter the gut metabolome directly via unmasking/generation of otherwise- inaccessible botanical phytochemicals; or indirectly via altered metabolism of Western diets.
Aim 3 will identify the exact metabolites in blood and intestinal fractions that predict neurobehavioral and metabolic impairment using validation cohorts and state-of-the art bioinformatic tools. Identification of these metabolites, and the commensal bacteria responsible for their production, could spearhead the formulation of safe and effective strategies to preserve health in the today's modern environment. Furthermore, improved understanding how gut microbiota balance the interactions of adverse and beneficial dietary elements could be harnessed to promote physiologic resilience in all patients regardless of diet.

Public Health Relevance

Unhealthy diets and obesity are among the greatest challenges facing American healthcare systems and can have dangerous consequences - both immediate and long-term - on an individual's physical, social, and emotional health. To confront this issue, clinical and experimental research is needed to evaluate new approaches. These studies will determine how the traditional herbal remedy fenugreek hijacks intestinal bacteria ? the gut microbiota ? to offset the damaging effects of modern unhealthy diets. These studies describe a systematic design to understand how fenugreek preserves health, and how modern unhealthy diets damage health, using both experimental- and computer-based models. Completion of these studies could lead to safe and effective strategies to improve health in today's complex, post- industrial environment.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Research Project (R01)
Project #
5R01AT010279-02
Application #
9789190
Study Section
Special Emphasis Panel (ZAT1)
Program Officer
Kim, Hye-Sook
Project Start
2018-09-20
Project End
2022-08-31
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Lsu Pennington Biomedical Research Center
Department
Type
Organized Research Units
DUNS #
611012324
City
Baton Rouge
State
LA
Country
United States
Zip Code
70808