Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA070101-01
Application #
2114052
Study Section
Special Emphasis Panel (ZRG7-STA (01))
Program Officer
Erickson, Burdette (BUD) W
Project Start
1996-03-01
Project End
1999-02-28
Budget Start
1996-03-01
Budget End
1997-02-28
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02215
Lin, Ja-An; Zhu, Hongtu; Mihye, Ahn et al. (2014) Functional-mixed effects models for candidate genetic mapping in imaging genetic studies. Genet Epidemiol 38:680-91
Guo, Ruixin; Zhu, Hongtu; Chow, Sy-Miin et al. (2012) Bayesian lasso for semiparametric structural equation models. Biometrics 68:567-77
Shi, Xiaoyan; Zhu, Hongtu; Ibrahim, Joseph G et al. (2012) Intrinsic Regression Models for Medial Representation of Subcortical Structures. J Am Stat Assoc 107:12-23
Zhu, Hongtu; Ibrahim, Joseph G; Cho, Hyunsoon et al. (2012) Bayesian Case Influence Measures for Statistical Models with Missing Data. J Comput Graph Stat 21:253-271
Zhu, Hongtu; Ibrahim, Joseph G; Tang, Niansheng (2011) Bayesian influence analysis: a geometric approach. Biometrika 98:307-323
Troxel, Andrea B; Lipsitz, Stuart R; Fitzmaurice, Garrett M et al. (2010) A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness. Stat Med 29:1511-21
Johnson, Brent A; Herring, Amy H; Ibrahim, Joseph G et al. (2007) Structured measurement error in nutritional epidemiology: applications in the Pregnancy, Infection, and Nutrition (PIN) Study. J Am Stat Assoc 102:856-866
Fitzmaurice, Garrett M; Lipsitz, Stuart R; Ibrahim, Joseph G (2007) A note on permutation tests for variance components in multilevel generalized linear mixed models. Biometrics 63:942-6
Fitzmaurice, Garrett M; Lipsitz, Stuart R; Ibrahim, Joseph G et al. (2006) Estimation in regression models for longitudinal binary data with outcome-dependent follow-up. Biostatistics 7:469-85
Parzen, Michael; Lipsitz, Stuart R; Fitzmaurice, Garrett M et al. (2006) Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Stat Med 25:2784-96

Showing the most recent 10 out of 39 publications