This proposal is aimed at a better understanding of the oncogenic role of anaplastic large cell lymphoma kinase (ALK). ALK is aberrantly expressed (most frequently as the NPM/ALK fusion protein) and/or activated in a subset of human T-cell and B-cell lymphomas, inflammatory myofibroblastic tumors, subsets of non-small cell lung carcinoma, rhabdomyosacroma, neuroblastoma, glioblastoma and retinoblastoma and, apparently, other malignancies. Whereas NPM/ALK is highly oncogenic, the exact mechanisms of the ALK-mediated cell transformation remain only partially elucidated. In this study we will examine these mechanisms by focusing on the key transcription factors activated by NPM/ALK: STAT3 and STAT5b including the role of STAT3 in induction of epigenetic gene silencing. We will also develop preclinical model of targeted therapy aimed at simultaneous disruption of the ALK/STAT-mediated cell signaling and ALK expression. To accomplish these goals we will: 1. Identify the genes regulated by NPM/ALK-STAT3 and NPM/ALK-STAT5b signaling pathways and examine the role of proteins encoded by the selected identified genes in the malignant cell transformation. 2. Examine the mechanisms of the STAT3-induced epigenetic silencing of the STAT5a gene. 3. Determine the effects of ALK and DNMT inhibitors on tumor growth in vitro and in vivo. This study should lead to further elucidation of pathogenesis of the ALK-driven neoplasms and may pave the road to novel, targeted therapies for these malignant disorders. Because the aberrant activation of STAT3 and STAT5 as well as the epigenetic silencing of tumor suppressor genes have been identified in the large spectrum of malignancies, results of this study may also have an impact on research and, prospectively, therapy of other types of cancer.

Public Health Relevance

Understanding exact mechanisms of the aberrant activation of cell signal transduction by oncogenic tyrosine kinases such as NPM/ALK and the role of their down-stream signaling effector proteins such as STAT3 and STAT5 transcription factors should lead to novel treatment modalities based on selective inhibition of activity of the oncogenic kinase as well as its key effector proteins. Therefore, these studies may result in targeted therapies for NPM/ALK- expressing lymphomas and other malignancies expressing oncogenic form of the ALK tyrosine kinase. Given that aberrant STAT3 and STAT5 activation is present in many types of cancer, they may also impact on research pertaining to tumors unrelated to ALK.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA096856-09
Application #
8204454
Study Section
Cancer Molecular Pathobiology Study Section (CAMP)
Program Officer
Howcroft, Thomas K
Project Start
2002-07-01
Project End
2013-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
9
Fiscal Year
2012
Total Cost
$290,381
Indirect Cost
$106,012
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Werner, Michael T; Zhang, Qian; Wasik, Mariusz A (2017) From Pathology to Precision Medicine in Anaplastic Large Cell Lymphoma Expressing Anaplastic Lymphoma Kinase (ALK+ ALCL). Cancers (Basel) 9:
Zhang, Qian; Wang, Hong Yi; Wei, Fang et al. (2014) Cutaneous T cell lymphoma expresses immunosuppressive CD80 (B7-1) cell surface protein in a STAT5-dependent manner. J Immunol 192:2913-9
Krejsgaard, Thorbjørn; Willerslev-Olsen, Andreas; Lindahl, Lise M et al. (2014) Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood 124:761-70
Zhang, Qian; Wei, Fang; Wang, Hong Yi et al. (2013) The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes. Am J Pathol 183:1971-80
Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin et al. (2013) Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming. J Immunol 191:6200-7
Lee, Seung-Cheol; Marzec, Michal; Liu, Xiaobin et al. (2013) Decreased lactate concentration and glycolytic enzyme expression reflect inhibition of mTOR signal transduction pathway in B-cell lymphoma. NMR Biomed 26:106-14
Yao, Sheng; Cheng, Mangeng; Zhang, Qian et al. (2013) Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One 8:e63757
Lee, Seung-Cheol; Arias-Mendoza, Fernando; Poptani, Harish et al. (2012) Prediction and Early Detection of Response by NMR Spectroscopy and Imaging. PET Clin 7:119-26
Zhang, Qian; Wang, Hongyi; Kantekure, Kanchan et al. (2011) Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS. Blood 118:3062-71
Marzec, M; Liu, X; Wong, W et al. (2011) Oncogenic kinase NPM/ALK induces expression of HIF1? mRNA. Oncogene 30:1372-8

Showing the most recent 10 out of 27 publications