P-glycoprotein (Pgp; also called multidrug resistance protein) is found in the plasma membrane of higher eukaryotes where it is responsible for ATP-hydrolysis-driven export of hydrophobic molecules. In animals, Pgp plays an important role in excretion of and protection from environmental toxins. When expressed in the plasma membrane of human cancer cells, Pgp can lead to failure of chemotherapy by preventing the hydrophobic chemotherapeutic drugs from reaching their targets inside the cells. Pgp is a member of the superfamily of ATP binding cassette (ABC) transporter proteins. ABC transporters consist typically of four domains, two nucleotide binding domains (NBDs) located in the cytoplasm and two trans-membrane domains (TMDs) responsible for drug binding and transport. Despite its important role in human disease, relatively little is known about the structure of Pgp. We are using electron microscopy of two-dimensional crystals to study the structure of Pgp. The immediate goals of this proposal are 1) to visualize the structural changes Pgp is undergoing during the catalytic cycle, 2) to calculate a three dimensional model of Pgp trapped at the different steps during ATP hydrolysis and drug transport and 3) to optimize the conditions under which we currently generate two dimensional crystals of Pgp. The structural studies will be conducted with Pgp crystallized in its native environment, the lipid bilayer. A three dimensional model of Pgp will serve as a basis for resolving the structural changes which Pgp is expected to undergo during the drug transport cycle. Understanding these structural changes might ultimately aid in the design for specific inhibitors for the protein in order to be able to regulate the activity of Pgp for a more effective chemotherapy.
Showing the most recent 10 out of 11 publications