Renal Cell Carcinoma (RCC) is among the most lethal and difficult tumors to treat, particularly when disease has spread beyond the kidney and into the surrounding fascia;even intensive combinations of radio- and chemotherapy are not curative and yield only a modest impact on patient survival. There is a major need for alternative therapeutic modalities. Expression of MDA-7/IL-24 in many different tumor cell types causes growth arrest and apoptosis whereas in non-transformed cells it alters neither cell growth nor cell survival. Previous studies have shown that MDA-7 administered either as a virus (Ad.mda-7), as a purified fusion protein (GST-MDA-7), or in conditioned media, suppressed the growth of tumor cells. In RCC we found that low concentrations of MDA-7 (0.5-1.5 nM) suppressed growth without killing cells whereas higher levels of MDA-7 (>20 nM) suppressed growth and enhanced cell death. Low levels of MDA-7 enhanced the sensitivity of RCCs to several agents that generate free radicals. The anti-proliferative and cytotoxic effects of MDA-7 and free radicals were not observed in primary renal cells. The mechanisms by which MDA-7 inhibits RCC proliferation and interacts with free radicals to kill RCCs are not fully understood.
Specific aim 1 will determine whether GST-MDA-7, in a dose-dependent fashion, causes increasing amounts of p38 MAPK activation and JNK1/2 activation, in RCCs, whose signaling is believed to be responsible for cytokine-induced apoptosis at high (>30 nM) GST-MDA-7 concentrations. Additionally, we will prove or refute whether [arsenic trioxide (As2O3) and N-(4-hydroxyphenyl) retinamide (4-HPR)], agents that generate reactive oxygen species, enhance the ability of low GST-MDA-7 concentrations (0.5-1.5 nM) to cause prolonged activation of the p38 and JNK1/2 pathways.
Specific aim 2 will determine the mechanisms by which combined treatment of RCCs with PI3 kinase and MEK1/2 inhibitors enhance cell killing by purified MDA-7 protein. Additionally, we will prove or refute whether [arsenic trioxide (As2O3) and N-(4-hydroxyphenyl) retinamide (4-HPR)], agents that generate reactive oxygen species, enhance the lethality of low GST-MDA-7 concentrations by causing inactivation of ERK1/2.
Specific aim 3 will determine whether infusion of Ad.mda-7 or MDA-7 protein, into a pre-existing tumor, reduces RCC growth and enhances tumor sensitivity to As2O3 and 4-HPR.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA108520-05
Application #
7664433
Study Section
Developmental Therapeutics Study Section (DT)
Program Officer
Muszynski, Karen
Project Start
2005-09-01
Project End
2012-07-31
Budget Start
2009-08-01
Budget End
2012-07-31
Support Year
5
Fiscal Year
2009
Total Cost
$279,026
Indirect Cost
Name
Virginia Commonwealth University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Menezes, Mitchell E; Bhoopathi, Praveen; Pradhan, Anjan K et al. (2018) Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Adv Cancer Res 138:143-182
Thomas, Shibu; Quinn, Bridget A; Das, Swadesh K et al. (2013) Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 17:61-75
Hamed, Hossein A; Das, Swadesh K; Sokhi, Upneet K et al. (2013) Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells. Cancer Biol Ther 14:1039-49
Das, Swadesh K; Sarkar, Siddik; Dash, Rupesh et al. (2012) Chapter One---Cancer terminator viruses and approaches for enhancing therapeutic outcomes. Adv Cancer Res 115:1-38
Bareford, M Danielle; Park, Margaret A; Yacoub, Adly et al. (2011) Sorafenib enhances pemetrexed cytotoxicity through an autophagy-dependent mechanism in cancer cells. Cancer Res 71:4955-67
Hamed, Hossein A; Yacoub, Adly; Park, Margaret A et al. (2010) OSU-03012 enhances Ad.7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther 9:526-36
Dent, Paul; Yacoub, Adly; Hamed, Hossein A et al. (2010) MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anticancer Drugs 21:725-31
Dent, Paul; Yacoub, Adly; Hamed, Hossein A et al. (2010) The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 128:375-84
Park, Margaret A; Mitchell, Clint; Zhang, Guo et al. (2010) Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway. Cancer Res 70:6313-24
Yacoub, Adly; Hamed, Hossein A; Allegood, Jeremy et al. (2010) PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 70:1120-9

Showing the most recent 10 out of 40 publications