The use of optical methods for imaging and treatment of cancer is growing rapidly, largely because they work well in the setting of early detection methods, treatment of pre-malignancies or as an adjuvant treatment. Optically active agents can provide a molecular-specific or site-specific localization in tumors, and in this work we exploit both of these for diagnostic and therapeutic use. In particular, we focus on aminolevulinic acid, which induces production of protoporphyrin IX (PPIX) in the mitochondria of cells, thereby providing both a diagnostic measure of cellular metabolism as well as a way to strategically cause photodynamic damage at this site. We will use two technologically advanced approaches to quantifying the fluorescence in vivo, including our tissue micro-sampling probe and our near-infrared tomographic instrumentation. We will systematically examine the optimal way to measure fluorescence from PPIX in tumors, using needle measurements, diffuse probe measurements and diffuse tomography imaging of tissue. We will use the optimal solution in several specific biological hypotheses. First in diagnostic use, we will examine how the production of PPIX is related to the growth rate of cancer cells, focusing on the multiple cell lines available in the Dunning prostate tumor. This will also help to explore the feasibility of using repeated dosing in imaging, and examining how this affects the measurements. For therapeutic targeting, we will use the imaging system to help us explore a novel targeting approach that we have developed, which synergistically combines photodynamic pre-treatment with radiation therapy. We have found that damage to the mitochondria causes acute respiration shut down, reducing the consumption of oxygen and providing a good way to increase the oxygenation in tumors. This effect was combined with single dose radiation therapy and was found to increase the efficacy of tumor destruction. In this study, we will further examine this effect focusing on exploiting the potential for fractionated delivery of both therapies. Since ALA-PPIX provides a proportionate measure of the cellular metabolic rate, we will use the fluorescence from PPIX as a diagnostic measure of cellular activity, while using indocyanine green fluorescence as a measure of the vascular volume of the tissue. Both can be quantified in the same tissue by appropriate filtering and sequencing of the light signals, and this combined imaging approach will be examined for reliability of monitoring vascular versus cellular damage in vivo.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA109558-05
Application #
7591856
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Deye, James
Project Start
2005-05-01
Project End
2010-09-30
Budget Start
2009-04-01
Budget End
2010-09-30
Support Year
5
Fiscal Year
2009
Total Cost
$299,439
Indirect Cost
Name
Dartmouth College
Department
Type
Schools of Engineering
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Bruza, Petr; Andreozzi, Jacqueline M; Gladstone, David J et al. (2017) Online Combination of EPID & Cherenkov Imaging for 3-D Dosimetry in a Liquid Phantom. IEEE Trans Med Imaging 36:2099-2103
Elliott, Jonathan T; Marra, Kayla; Evans, Linton T et al. (2017) SimultaneousIn VivoFluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma. Clin Cancer Res 23:2203-2212
Zhang, Rongxiao; Glaser, Adam K; Andreozzi, Jacqueline et al. (2017) Beam and tissue factors affecting Cherenkov image intensity for quantitative entrance and exit dosimetry on human tissue. J Biophotonics 10:645-656
Elliott, Jonathan T; Samkoe, Kimberley S; Davis, Scott C et al. (2016) Image-derived arterial input function for quantitative fluorescence imaging of receptor-drug binding in vivo. J Biophotonics 9:282-95
DSouza, Alisha V; Marra, Kayla; Gunn, Jason R et al. (2016) Optical tracer size differences allow quantitation of active pumping rate versus Stokes-Einstein diffusion in lymphatic transport. J Biomed Opt 21:100501
Pogue, Brian W; Paulsen, Keith D; Samkoe, Kimberley S et al. (2016) Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention. Med Phys 43:3143-3156
Davis, Scott C; Tichauer, Kenneth M (2016) Small-Animal Imaging Using Diffuse Fluorescence Tomography. Methods Mol Biol 1444:123-37
Andreozzi, Jacqueline M; Zhang, Rongxiao; Gladstone, David J et al. (2016) Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy. Med Phys 43:993-1002
Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R et al. (2016) Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation. Phys Med Biol 61:3955-68
DSouza, Alisha V; Lin, Huiyun; Henderson, Eric R et al. (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901

Showing the most recent 10 out of 77 publications