Tumor-specific T cell tolerance represents one of the major challenges in cancer immunotherapy. To elicit effective anti-tumor immunity, it is necessary to develop immunotherapeutic strategies capable of overcoming T cell tolerance. In a murine model of A20 lymphoma, we have demonstrated that tumor-specific CDS tolerance is mediated by CD4+CD25+ regulatory T (TReg) cells and that reversal of established TReg cell mediated tumor-specific CDS tolerance by tumor vaccines depends on sustained Toll-like receptor (TLR) signals of innate immunity in vivo. This can be achieved by virus-based vaccines that can provide TLR signals intrinsically or mature DC vaccines with co-administration of a TLR ligand. More importantly, provision of TLR signals significantly enhances the efficacy of tumor vaccines in treating pre-established A20 lymphoma, suggesting an essential role of TLR signals in cancer immunotherapy. In this application, we will investigate the mechanisms underlying TLR-dependent reversal of TReg cell-mediated tumor-specific CDS tolerance in vivo. Specifically, we will pursue the following five aims: 1) To determine if reversal of TReg cell-mediated tumor-specific CDS tolerance in vivo by vaccinia virus vs. adenovirus vaccines is mediated through distinct TLR pathways; 2) To delineate the role of pro-inflammatory cytokines IL-6, IL-12 and/or IL-1 in reversal of TReg cell-mediated tumor-specific CDS tolerance in vivo; 3)To assess the role of Type I interferons (IFNs) in overcoming TReg cell-mediated tumor-specific CD8 tolerance in vivo; 4) To investigate the role of glucocorticoid-induced TNF receptor family-related protein (GITR) and GITR ligand interaction in breaking TReg cell-mediated tumor-specific CDS tolerance in vivo; 5) To evaluate the efficacy of tumor vaccines with TLR signals in treating pre-established A20 lymphoma. The outcome of these studies should have significant impact on the design of effective immunotherapeutic strategies for treating cancer.
Showing the most recent 10 out of 19 publications