DNA damaging anticancer agents induce arrest at various checkpoints throughout the cell cycle. This protective mechanism allows cells time to repair damage before progressing. UCN-01 (7-hydroxy-staurosporine) was identified as a potent inhibitor of the DNA damage-induced S and G2 arrest, thereby causing a marked enhancement in cell killing. UCN-01-mediated abrogation of normal cells is prevented by the p53 tumor suppressor protein. Thus, UCN-01 may selectively enhance chemotherapy in the tumor while sparing normal tissue. However, some p53-defective tumors are also resistant to UCN-01, while some p53-wildtype tumors are sensitive. This leads to the major question in this proposal: what are the determinants of response to checkpoint inhibitors? Aim 1 will focus on p53-defective tumor cell lines and investigate the role of Chk1 (inhibited by UCN-01) and other checkpoint kinases in arresting cell cycle progression. The response of various cell lines to different checkpoint inhibitors will be assessed. Three resistant tumor cell models will be analyzed for alternate kinases that explain their resistance to Chk1 and Chk2 inhibitors;candidate kinases include hSAD1, PLK3, MAPKAPK2 and JNK. To confirm the role of each kinase in checkpoint regulation, cell lines will be generated in which the kinase expression is prevented by siRNA.
Aim 2 will address the question as to why some p53-wildtype tumors retain sensitivity to Chk1 inhibitors despite the fact that non-tumorigenic lines are resistant. Recent results demonstrate that p53 regulates the checkpoint through both gene activation (p21waf1) and repression (cyclin B) and that regulation of both of these proteins is defective in UCN-01-sensitive p53 wildtype tumors;p21 fails to be induced during S phase arrest, while cyclin B fails to be repressed during G2 arrest. The transcriptional and post-translational regulation of these two proteins will be studied and contributors to their differential regulation assessed. Experimental approaches will include dissection of the pathways through promoter analysis and chromatin immunoprecipitation assays. As novel checkpoint inhibitors enter clinical trial, the results of these studies will provide a basis upon which to stratify patients and thereby enhance the probability of developing a successful therapeutic regimen. For those tumors in which a response is not indicated, these experiments will likely identify alternate targets for drug discovery.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA117874-05
Application #
8074512
Study Section
Developmental Therapeutics Study Section (DT)
Program Officer
Arya, Suresh
Project Start
2007-08-10
Project End
2013-03-31
Budget Start
2011-06-01
Budget End
2013-03-31
Support Year
5
Fiscal Year
2011
Total Cost
$294,696
Indirect Cost
Name
Dartmouth College
Department
Pharmacology
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Eastman, Alan (2017) Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget 8:8854-8866
Sakurikar, Nandini; Eastman, Alan (2016) Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle 15:1184-8
Sakurikar, Nandini; Thompson, Ruth; Montano, Ryan et al. (2016) A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 7:1380-94
Hou, Huagang; Krishnamurthy Nemani, Venkata; Du, Gaixin et al. (2015) Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry. Int J Cancer 136:1688-96
Sakurikar, Nandini; Eastman, Alan (2015) Will targeting Chk1 have a role in the future of cancer therapy? J Clin Oncol 33:1075-7
Khan, Nadeem; Hou, Huagang; Hodge, Sassan et al. (2014) Recurrent low-dose chemotherapy to inhibit and oxygenate head and neck tumors. Adv Exp Med Biol 812:105-111
Hou, Huagang; Khan, Nadeem; Lariviere, Jean et al. (2014) Skeletal muscle and glioma oxygenation by carbogen inhalation in rats: a longitudinal study by EPR oximetry using single-probe implantable oxygen sensors. Adv Exp Med Biol 812:97-103
Thompson, Ruth; Eastman, Alan (2013) The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol 76:358-69
Montano, Ryan; Thompson, Ruth; Chung, Injae et al. (2013) Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer 13:604
Montano, Ryan; Chung, Injae; Garner, Kristen M et al. (2012) Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol Cancer Ther 11:427-38

Showing the most recent 10 out of 17 publications