Rhabdomyosarcoma (RMS) is a heterogeneous collection of cancers demonstrating varying degrees of skeletal muscle differentiation. Although accounting for ~8% of pediatric malignant solid tumors, RMS is the most common soft tissue sarcoma in children younger than 14 years. The two major histologic subtypes of RMS are embryonal (eRMS) and alveolar (aRMS). High risk patients have a 5-year survival of 30%, and outcome is very poor for children whose tumors express the PAX3-FKHR fusion gene;when metastatic, their 5-year survival is <8%. This signature genetic change is found only in aRMS and considered a tumor-specific oncogene, but has no molecularly targeted treatment. To address gaps in knowledge of RMS, we have created a new model for this disease based on the conversion of primary human skeletal muscle cells to their tumorigenic counterpart, using a defined set of genetic changes. Using this model, we found that human skeletal muscle myoblasts may be converted to cells that generate tumors mimicking RMS when tested as xenografts in immunodeficient mice. Having established that primary human cells of skeletal muscle origin can give rise to RMS, we studied the repercussions of expressing PAX3-FKHR in them, and discovered two phenotypes that may underlie its oncogenic behavior. First, when PAX3-FKHR was stably expressed as an early genetic change, it enabled bypass of the senescence checkpoint and served as an initiating oncogenic hit for the development of skeletal muscle tumors. Second, when PAX3-FKHR was stably expressed as a late genetic change, it shortened the latency of in vivo tumor formation from 11 to 2 weeks, possibly through activation of the Ras pathway, since in control experiments PAX3-FKHR could functionally substitute for the RAS oncogene. In this proposal, we wish to understand how PAX3-FKHR enables bypass of the senescence checkpoint, and how it accelerates tumorigenesis in previously transformed cells. To accomplish this, we will (1) examine candidate proteins that are downstream of PAX3-FKHR for their role in overcoming the senescence checkpoint, using both gain-of-function and loss-of-function approaches, and (2) examine the accelerated tumor cells for enhanced self-sufficiency in growth signaling, apoptosis, and/or angiogenesis, and the role of the Ras pathway in this PAX3-FKHR-augmented tumorigenesis. The accomplishment of these aims will provide insight into the genesis of this pediatric malignancy, and provide new therapeutic targets for study. In addition, this genetically defined model will serve as a template for the systematic investigation of other human sarcomas.

Public Health Relevance

This research uniquely models the series of oncogenic events causing the pediatric cancer rhabdomyosarcoma. It is expected to yield insight into the genesis of this cancer, provide new therapeutic targets for study, and serve as a template for the systematic analysis of other human sarcomas.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA122706-02
Application #
7751314
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Watson, Joanna M
Project Start
2009-01-01
Project End
2013-11-30
Budget Start
2009-12-01
Budget End
2010-11-30
Support Year
2
Fiscal Year
2010
Total Cost
$291,330
Indirect Cost
Name
Duke University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Deel, Michael D; Slemmons, Katherine K; Hinson, Ashley R et al. (2018) The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res 24:2616-2630
Slemmons, Katherine K; Crose, Lisa E S; Riedel, Stefan et al. (2017) A Novel Notch-YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma. Mol Cancer Res 15:1777-1791
Conti, Beatrice; Slemmons, Katherine K; Rota, Rossella et al. (2016) Recent Insights into Notch Signaling in Embryonal Rhabdomyosarcoma. Curr Drug Targets 17:1235-44
Kephart, Julie J G; Tiller, Rosanne G J; Crose, Lisa E S et al. (2015) Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma. Clin Cancer Res 21:4868-80
Hedrick, Erik; Crose, Lisa; Linardic, Corinne M et al. (2015) Histone Deacetylase Inhibitors Inhibit Rhabdomyosarcoma by Reactive Oxygen Species-Dependent Targeting of Specificity Protein Transcription Factors. Mol Cancer Ther 14:2143-53
Slemmons, Katherine K; Crose, Lisa E S; Rudzinski, Erin et al. (2015) Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma. PLoS One 10:e0140781
Crose, Lisa E S; Galindo, Kathleen A; Kephart, Julie Grondin et al. (2014) Alveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression. J Clin Invest 124:285-96
Zhang, Minsi; Linardic, Corinne M; Kirsch, David G (2013) RAS and ROS in rhabdomyosarcoma. Cancer Cell 24:689-91
Ignatius, Myron S; Chen, Eleanor; Elpek, Natalie M et al. (2012) In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21:680-93
Crose, Lisa E S; Etheridge, Katherine T; Chen, Candy et al. (2012) FGFR4 blockade exerts distinct antitumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma. Clin Cancer Res 18:3780-90

Showing the most recent 10 out of 11 publications