The KLF4 transcription factor is important in cell fate and differentiation of epithelial cells. KLF4 rapidly initiates cutaneous squamous cell carcinoma (SCC) in mice, and is deregulated at an early step in human skin tumor progression. Using a conditional KLF4-ER fusion protein, we identified the cell fate determinant Notch 1 as a transcriptional target of KLF4. In cultured cells, in transgenic mice and in human tumors, KLF4 expression is associated with expression of Notchl, Notchl ligands, and Notchl effectors such as Cyclin D1. Transformation of RK3E epithelial cells requires Notchl. These studies identify a KLF4-Notch1 pathway that appears important in cell fate specification of normal epithelial cells and tumor cells. Mutagenesis of KLF4 identified dominant negative (DN) alleles that block transformation in vitro by KLF4. KLF4-DNs identify a role of KLF4 in growth of specific human cell types in vitro, and in transformation by specific transforming oncogenes such as ErbB2 and c-MYC. To study the role of Klf4 in cutaneous SCC we developed a novel highly penetrant model of SCC by administering carcinogens to genetically-engineered mice. Tumors were histologically similar to human SCC, and expressed SCC markers such as p53, keratin 14, and Notch! SCCs that developed in this model included KLF4-positive tumors and some tumors that were KLF4-negative. To understand the mechanisms that normally regulate KLF4, we will study the role of posttranslational modifications in the DN activity of mutant KLF4 proteins (Aim 1). The role of endogenous Klf4 in tumor initiation and maintenance will be studied in the new SCC mouse model using conditional, Cre-mediated deletion of Klf4/LoxP alleles, and by tetracycline-inducible expression of siRNA or KLF4-DN in transgenic mice (Aim 2). Using similar loss- and gain-of-function strategies, the role of Klf4 in mammary epithelial development and in transformation by ErbB2 will be determined (Aim 3).
In Aim 4, a posttranslational control that appears responsible for upregulation of Klf4 transcripts in mouse and human SCC will be analyzed by identifying RNA destabilizing elements in the KLF4 cDNA. These studies may provide support of a role for KLF4 and Notchl in pathogenesis of common human cancers such as SCC and breast cancer. Thus, completion of the studies would identify this pathway as a target for prevention and treatment, and provide new animal models in which to assess such therapies.
Showing the most recent 10 out of 11 publications