Neoadjuvant or preoperative chemotherapy is becoming an important part in breast-cancer treatment and management. In parallel it is important to develop reliable monitoring methods to evaluate the response. Dynamic contrast enhanced MRI (DCE-MRI) has been proven as the most accurate imaging modality to predict residual tumor responses. In this study we will apply serial DCE-MRI studies to evaluate the pre-treatment lesion characteristic features, along with the early response patterns determined in follow-up MRI studies to aim for accurate prediction of pathologic complete remission (pCR), which is the most relevant prognostic factor in patients receiving neoadjuvant chemotherapy. ? ? At our institution we have an active on-going neoadjuvant chemotherapy protocol. In previous patient cohorts we have demonstrated that MRI is very helpful to provide response-monitoring information for timely adjustment of regimens. Based on these results we have determined the treatment protocols to be used in the current study. Patients will receive 2 cycles AC treatment (doxorubicin and cyclophosphamide) then followed by 4 cycles Taxane regimen (Nab-paclitaxel with Carboplatin, with trastuzumab for HER2-positive cancer and bevacizumab for HER2-negative cancer). In the current proposal we will take the role of MRI one step further, to investigate whether the pre-treatment tumor characteristics, including morphology, texture, and vascular parameters, as well as metabolic information, can be used to predict whether a patient will achieve pCR. The information that we obtain will reveal the differences between these two groups, and that can be used to build a model to predict the likelihood of achieving pCR. If a patient is expected to show a good response, the protocol can be given as it is. If a patient is expected not to show a good response to reach pCR, a modified protocol should be considered. The response monitoring data may also provide information for modifying the regimen to reach an improved efficacy. The early response after 2 cycles AC, then after addition of 1 cycle of taxane will be evaluated. Overall we will evaluate the accuracy of using pre-treatment MRI characteristic parameters, and early tumor response patterns during the treatment course, to differentiate between patients who achieve pCR vs. those who do not. It is hypothesized that a higher accuracy in prediction of pCR can be achieved using combined pre-treatment lesion characteristics and early tumor response patterns compared to that using either set of data alone. ? ? ?
Showing the most recent 10 out of 58 publications