Recent evidence has confirmed that positive energy balance, as estimated by obesity, strongly influences prostate carcinogenesis. However, the complexity of how energy balance influences, and is influenced, by various metabolic hormones and sympathetic nervous system activity (SNS) adds considerable complexity to the role of energy balance for this cancer. Further, the influences of energy balance may differ for prostate cancer incidence and progression. A third complicating factor is that there may be distinct etiologies for early- onset and late-onset prostate cancers. We propose three distinct patterns, suggested by our preliminary data and other studies, whereby energy balance related variables influence prostate cancer: Pattern 1: Metabolic alterations associated with obesity and lack of physical activity, including high insulin and leptin, and low adiponectin levels, increase risk of prostate cancer progression. Further, the low testosterone levels associated with obesity may contribute to more poorly differentiated cancers and thus a worse prognosis. Pattern 2: Higher insulin-like growth factor (IGF-1) levels influence progression of well- to moderately-well differentiated prostate cancers, whereas cancers that have molecular alterations in the IGF-1 signaling pathway and hence upregulated IGF-1 signaling are relatively unresponsive to circulating IGF-1 levels. Pattern 3: Younger men with an inherent metabolic phenotype related to SNS activity that disassociates high energy intake from weight gain and which is associated with chronic prostatitis/chronic pelvic pain syndrome prostatitis are at increased risk of prostate cancer. We will address these three patterns whereby energy balance may influence prostate cancer risk in the Health Professionals Follow-up Study (HPFS), a cohort of the 47,000 men free of cancer at baseline in 1986. We project 6,085 new cases of prostate cancer by 2010, including 668 fatal cases, with tumor blocks from over 1,900 prostatectomy cases. The sources of the exposure data in the HPFS are questionnaire, including diet, anthropometric measures, activity, medication use, and plasma samples. The outcome data will be based on (1) medical record and pathology report review, and (2) tissue block markers that correlate with disease progression. Stratified analysis and multivariate analysis will be used to control for confounding factors. Our ultimate goal is to better understand how body weight, and related dietary and other modifiable factors, influence prostate carginogenesis at various stages.

Public Health Relevance

Our preliminary data and other data suggest that energy balance-related variables influence prostate cancer. To help reduce the apparent inconsistencies in the literature for energy balance and prostate cancer risk, we hypothesize three distinct patterns whereby energy balance variables may influence prostate cancer risk. These three patterns would also help explain some of the apparent age patterns of prostate cancer epidemiology. We propose to study these patterns in the Health Professionals Follow-up Study (HPFS), a cohort of the 47,000 men free of cancer at baseline in 1986. We project 6,085 new cases of prostate cancer by 2010, including 668 fatal cases, with tumor blocks from over 1,900 prostatectomy cases. Our ultimate goal is to better understand how body weight, and related dietary and other modifiable factors, influence prostate carcinogenesis at various stages with a focus on prevention of morbidity and mortality from these risk factors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA133891-03
Application #
7904296
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Mahabir, Somdat
Project Start
2008-09-26
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
3
Fiscal Year
2010
Total Cost
$661,653
Indirect Cost
Name
Harvard University
Department
Nutrition
Type
Schools of Public Health
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M et al. (2018) Current or recent smoking is associated with more variable telomere length in prostate stromal cells and prostate cancer cells. Prostate 78:233-238
Ebot, Ericka M; Gerke, Travis; Labbé, David P et al. (2017) Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer. Cancer 123:4130-4138
Julin, Bettina; Shui, Irene M; Prescott, Jennifer et al. (2017) Plasma vitamin D biomarkers and leukocyte telomere length in men. Eur J Nutr 56:501-508
Dickerman, Barbra A; Ahearn, Thomas U; Giovannucci, Edward et al. (2017) Weight change, obesity and risk of prostate cancer progression among men with clinically localized prostate cancer. Int J Cancer 141:933-944
Stopsack, Konrad H; Gerke, Travis A; Andrén, Ove et al. (2017) Cholesterol uptake and regulation in high-grade and lethal prostate cancers. Carcinogenesis 38:806-811
Sinnott, Jennifer A; Peisch, Sam F; Tyekucheva, Svitlana et al. (2017) Prognostic Utility of a New mRNA Expression Signature of Gleason Score. Clin Cancer Res 23:81-87
Penney, Kathryn L; Pettersson, Andreas; Shui, Irene M et al. (2016) Association of Prostate Cancer Risk Variants with TMPRSS2:ERG Status: Evidence for Distinct Molecular Subtypes. Cancer Epidemiol Biomarkers Prev 25:745-9
Möller, Elisabeth; Wilson, Kathryn M; Batista, Julie L et al. (2016) Body size across the life course and prostate cancer in the Health Professionals Follow-up Study. Int J Cancer 138:853-65
Kenfield, Stacey A; Batista, Julie L; Jahn, Jaquelyn L et al. (2016) Development and Application of a Lifestyle Score for Prevention of Lethal Prostate Cancer. J Natl Cancer Inst 108:
Rudman, Sarah M; Gray, Kathryn P; Batista, Julie L et al. (2016) Risk of prostate cancer-specific death in men with baseline metabolic aberrations treated with androgen deprivation therapy for biochemical recurrence. BJU Int 118:919-926

Showing the most recent 10 out of 67 publications