Tumors of the Ewing's sarcoma family (ESFT) are solid, highly malignant neoplasms of the bone and soft tissues that most often affect children and adolescents, being the second most common bone malignancies among young adults. Current treatment includes a combined modality with chemotherapy and radiotherapy. However, there are two important problems to consider: a) although ESFT are generally responsive to treatment, the overall cure rate is low because these tumors are very aggressive and patients frequently present with metastatic disease; and b) exposure of young patients to high doses of chemotherapy and/or radiation is frequently associated with a variety of adverse health effects that in some cases do not develop until many years after treatment completion. Consequently, treatment strategies are needed to maximize curability while simultaneously minimizing adverse late effects for the patients. In preliminary studies, we directly targeted EWS/FLI-1, the transcription factor known to be responsible for the malignant properties of most ESFT, using molecular tools designed to block its activity, either alone or in combination with chemotherapeutic drugs and/or radiation. Although experiments in vitro and in mouse xenografts demonstrated that these tools efficiently delayed tumor growth, it became clear that simultaneous targeting of additional molecules that act downstream of EWS/FLI-1 would be necessary to maximize antitumor activity and to allow the use of lower therapeutic doses, thus minimizing negative late effects as much as possible. In this context, the main objective of this proposal is to exploit a novel EWS/FLI-1-driven pathway recently established in our laboratory (EWS/FLI-1-[Caveolin->1-Snail-E-cadherin]) to sensitize ESFT cells to therapy, using ionizing radiation (IR) as a model anti-neoplastic agent that does not suffer from the specificity- related problems that frequently complicate studies with chemotherapeutic drugs. Since the extent of IR related late effects in normal tissues surrounding the tumor are directly related to the IR dose, in pediatric cancers it is important to employ the lowest dose possible to cure the tumors. Using EWS cells as the ESFT prototype, our central hypothesis is that (a) targeting caveolin-1 (CAV1) itself and/or its interactions with signaling or regulatory proteins relevant for ESFT molecular pathobiology (such as phospholipase D2 and protein kinase C1) will render EWS cells more sensitive to IR, and (b) that this response may be further improved by simultaneously targeting components of other pathways also known to radiosensitize EWS cells, such as poly (ADP-ribose) polymerase (PARP). Because we already identified CAV1 as a direct transcriptional target of EWS/FLI-1 and a key determinant of the tumorigenicity and chemotherapeutic response of EWS cells, targeting CAV1 signaling may have a dual effect: enhancing killing of EWS cells by low-dose IR and down- regulating their neoplastic properties. PUBLIC HEALTH RELAVANCE: Tumors of the Ewing's sarcoma family (ESFT) are solid, highly malignant cancers of the bone and soft tissues that most often affect children and adolescents, being the second most common bone malignancies among young adults. There are two important problems to consider: a) despite aggressive treatment strategies, such as high-dose chemotherapy combined with surgery and/or extended radiotherapy, the prognosis for ESFT patients with large primary tumors or metastatic disease remains poor; about 50% of patients eventually relapse, even after five years, and more than 30% of patients with localized disease and about 80% of patients with metastases die due to disease progression; and b) exposure of young patients to high doses of chemotherapy and/or radiation is frequently associated with a variety of adverse health effects that in some cases do not develop until many years after treatment completion. Consequently, treatment strategies are needed to maximize curability while simultaneously minimizing adverse late effects for the patients. In this context, we propose to use Ewing's sarcoma cells as the ESFT prototype, and radiation as a model anti-cancer agent that does not suffer from the specificity-related problems that frequently complicate studies with chemotherapeutic drugs, to devise protocols to sensitize ESFT cells to therapy. Specifically, we will use state-of-the-art techniques to block the production and/or activity of molecular components of a novel pathway {EWS/FLI-1-> [CAV1-PKC1-PLD2]-mTOR} established in our laboratory as driven by the EWS/FLI-1 protein, which is known to be responsible for the malignant properties of ESFT. Our preliminary studies strongly indicate that components of this pathway such as CAV1 and PKC1 contribute to render ESFT cells resistant to chemotherapy and radiation. Our approach will, first, characterize the mechanism of action of each of the pathway components and their interrelationships, and then target them either individually or in combination to improve the therapeutic response of the ESFT cells and tumors. Treatments with inhibitors of PARP-1, a molecule previously shown in our Department to contribute to the radiation resistance of ESFT, will be included also in our experimental protocols. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA134727-01
Application #
7506120
Study Section
Special Emphasis Panel (ZRG1-ONC-K (04))
Program Officer
Stone, Helen B
Project Start
2008-07-01
Project End
2013-05-31
Budget Start
2008-07-01
Budget End
2009-05-31
Support Year
1
Fiscal Year
2008
Total Cost
$318,513
Indirect Cost
Name
Georgetown University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Eldhose, Binil; Gunawan, Mia; Rahman, Mahbubur et al. (2014) Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis. Int J Oncol 45:1913-20
MacCarthy, Caitlin M; Notario, Vicente (2013) The ENTPD5/mt-PCPH oncoprotein is a catalytically inactive member of the ectonucleoside triphosphate diphosphohydrolase family. Int J Oncol 43:1244-52
Becerra, S Patricia; Notario, Vicente (2013) The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 13:258-71
Sengupta, Aniruddha; Rahman, Mahbubur; Mateo-Lozano, Silvia et al. (2013) The dual inhibitory effect of thiostrepton on FoxM1 and EWS/FLI1 provides a novel therapeutic option for Ewing's sarcoma. Int J Oncol 43:803-12
Subramanian, P; Deshpande, M; Locatelli-Hoops, S et al. (2012) Identification of pigment epithelium-derived factor protein forms with distinct activities on tumor cell lines. J Biomed Biotechnol 2012:425907
Deshpande, Monika; Notari, Luigi; Subramanian, Preeti et al. (2012) Inhibition of tumor cell surface ATP synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol 41:219-27
Sengupta, Aniruddha; Mateo-Lozano, Silvia; Tirado, Oscar M et al. (2011) Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing's sarcoma cells. Int J Oncol 38:1259-65
Sáinz-Jaspeado, Miguel; Lagares-Tena, Laura; Lasheras, Jaime et al. (2010) Caveolin-1 modulates the ability of Ewing's sarcoma to metastasize. Mol Cancer Res 8:1489-500
Tirado, Oscar M; MacCarthy, Caitlin M; Fatima, Naheed et al. (2010) Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in Ewing's sarcoma cells by modulating PKCalpha phosphorylation. Int J Cancer 126:426-36