Human Herpesvirus 8 (HHV8, also known as KSHV) is one of the commonest causes of malignancies among young adults in parts of the world and has been associated with Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). The prognosis of patients with HHV8-associated lymphoproliferative disorders is extremely poor due to their immunocompromised status and there is an urgent need for less toxic therapies for the treatment of these malignancies. We have discovered that K13, a small protein encoded by HHV8, directly interacts with the NEMO/IKK3 subunit of the IkB kinase (IKK) complex to activate the NF-kB pathway and utilizes this pathway to promote cellular survival, proliferation, transformation and cytokine secretion. The above studies have established NF-kB pathway as an important therapeutic target for the treatment of HHV8-associated malignancies. However, since NF-kB pathway plays a key role in normal immune and inflammatory response, global inhibitors of this pathway are likely to lead to severe immunosuppression, thus limiting their potential clinical utility in HHV8-infected patients. To circumvent this problem, we propose to develop a high throughput screening (HTS) assay for isolating small molecule inhibitors of K13-NEMO interaction. It is hoped that such inhibitors will specifically block K13-induced NF-kB without interfering with the physiological activation of this pathway during normal immune and inflammatory response. Furthermore, specific inhibitors of K13-NEMO interaction will serve as useful pharmacological probes to understand the various biological activities of K13.

Public Health Relevance

Infection with the Human Herpesvirus 8 (HHV8) has been linked to a number of human cancers. In this project, we propose to develop a high throughput screening assay for compounds that can block the interaction of K13, a small protein encoded by HHV8, with the cellular regulatory protein NEMO. It is hoped that such compounds will not only lead to a better understanding of the biological functions of K13 but also serve as lead compounds for the development of targeted therapies for HHV8-associated malignancies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA139119-01A2
Application #
7979507
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Arya, Suresh
Project Start
2010-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$268,920
Indirect Cost
Name
University of Southern California
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Tolani, Bhairavi; Matta, Hittu; Gopalakrishnan, Ramakrishnan et al. (2014) NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process. J Virol 88:6345-54
Tolani, B; Gopalakrishnan, R; Punj, V et al. (2014) Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors. Oncogene 33:2928-37
Graham, Ciaren; Matta, Hittu; Yang, Yanqiang et al. (2013) Kaposi's sarcoma-associated herpesvirus oncoprotein K13 protects against B cell receptor-induced growth arrest and apoptosis through NF-ýýB activation. J Virol 87:2242-52
Gopalakrishnan, Ramakrishnan; Matta, Hittu; Chaudhary, Preet M (2013) A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-?B. Clin Cancer Res 19:5016-26
Matta, Hittu; Gopalakrishnan, Ramakrishnan; Graham, Ciaren et al. (2012) Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein K13 activates NF-ýýB pathway independent of TRAF6, TAK1 and LUBAC. PLoS One 7:e36601
Punj, Vasu; Matta, Hittu; Chaudhary, Preet M (2012) A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma. PLoS One 7:e37498
Yang, Yanqiang; Groshong, Jason S; Matta, Hittu et al. (2011) Constitutive NF-kappaB activation confers interleukin 6 (IL6) independence and resistance to dexamethasone and Janus kinase inhibitor INCB018424 in murine plasmacytoma cells. J Biol Chem 286:27988-97