It has been convincingly shown that nanotechnology can provide unique solutions to revolutionize diagnosis and treatment of many devastating diseases such as cancer. One specific area of great interest is development of nanoparticles for molecular specific imaging, therapy and combined imaging/therapy. A major roadblock in translation of inorganic nanoparticles to clinical practice for systemic targeting of cancer cells is their non-biodegradable nature. In addition, sizes of coated nanoparticles that are used in biological applications are not small enough to be easily cleared from the body. The accumulation and resulting long- term toxicity of nanoparticles is a major concern. In this research program we will create a new class of biodegradable gold nanoparticles with plasmon resonances in the NIR region. The nanoparticles will degrade to easily clearable components in the body and, therefore, will provide a crucial missing link between the enormous potential of metal nanoparticles for cancer imaging and therapy and translation into clinical practice. Our synthetic methodology is based on controlled assembly of very small (less than 5 nm) primary gold particles into nanoclusters with <100 nm overall diameter and an intense NIR absorbance. The assembly will be mediated by biodegradable polymers and small capping ligands on the primary nanoparticles. After delivery into the body the nanoclusters will biodegrade over time into sub-6 nm ligand capped primary gold nanoparticles, which will be highly favorable for rapid clearance from the body. This hybrid polymer/inorganic material will combine advantages of biodegradability of polymer nanoparticles and strong imaging contrast and therapeutic capabilities afforded by metal nanoparticles. Whereas these nanoclusters will be shown to have widespread potential in imaging/therapy, we will develop and optimize in this particular application biodegradable plasmonic nanoclusters with intense NIR absorbance for photo-acoustic imaging (PA) of cancerous cells. The nanoclusters will be evaluated in biologically relevant models of oral cancer.

Public Health Relevance

It has been convincingly shown that nanotechnology can provide unique solutions to revolutionize diagnosis and treatment of many devastating diseases such as cancer. One specific area of great interest is development of nanoparticles for molecular specific imaging, therapy and combined imaging/therapy. A major roadblock in translation of inorganic nanoparticles to clinical practice for systemic targeting of cancer cells is their accumulation in the body and resulting long-term toxicity. In this research program we will create a new class of biodegradable gold nanoparticles with plasmon resonances in the NIR region. The nanoparticles will degrade to easily clearable components in the body and, therefore, will provide a crucial missing link between the enormous potential of metal nanoparticles for cancer imaging and therapy and translation into clinical practice.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA143663-02
Application #
8010637
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Tandon, Pushpa
Project Start
2010-01-01
Project End
2014-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
2
Fiscal Year
2011
Total Cost
$291,911
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Radiation-Diagnostic/Oncology
Type
Other Domestic Higher Education
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Stover, Robert J; Moaseri, Ehsan; Gourisankar, Sai P et al. (2016) Formation of Small Gold Nanoparticle Chains with High NIR Extinction through Bridging with Calcium Ions. Langmuir 32:1127-38
Stover, Robert J; Murthy, Avinash K; Nie, Golay D et al. (2014) Quenched Assembly of NIR-Active Gold Nanoclusters Capped with Strongly Bound Ligands by Tuning Particle Charge via pH and Salinity. J Phys Chem C Nanomater Interfaces 118:14291-14298
Ma, L L; Borwankar, A U; Willsey, B W et al. (2013) Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance. Nanotechnology 24:025606
Murthy, Avinash K; Stover, Robert J; Borwankar, Ameya U et al. (2013) Equilibrium gold nanoclusters quenched with biodegradable polymers. ACS Nano 7:239-51
Murthy, Avinash K; Stover, Robert J; Hardin, William G et al. (2013) Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum. J Am Chem Soc 135:7799-802
Yoon, Soon Joon; Murthy, Avinash; Johnston, Keith P et al. (2012) Thermal stability of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt Express 20:29479-87
Ma, Li Leo; Tam, Justina O; Willsey, Brian W et al. (2011) Selective targeting of antibody conjugated multifunctional nanoclusters (nanoroses) to epidermal growth factor receptors in cancer cells. Langmuir 27:7681-90
Tam, Jasmine M; Murthy, Avinash K; Ingram, Davis R et al. (2010) Kinetic assembly of near-IR-active gold nanoclusters using weakly adsorbing polymers to control the size. Langmuir 26:8988-99
Yoon, Soon Joon; Mallidi, Srivalleesha; Tam, Jasmine M et al. (2010) Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt Lett 35:3751-3
Tam, Jasmine M; Tam, Justina O; Murthy, Avinash et al. (2010) Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. ACS Nano 4:2178-84