Precisely regulated cell proliferation is essential for embryonic development as well as homeostasis in adult organs and tissues, whereas uncontrolled cell proliferation is a hallmark of cancer. Thus, elucidating how the cell cycle machinery is controlled is an important area of research in cancer cell biology. A large body of evidence has established a basic paradigm of the control of cell cycle progression involving the Retinoblastoma (Rb) protein family in conjunction with the E2F family of transcription factors. During G0/G1, interaction of hypo-phosphorylated Rb proteins with E2Fs prevents the transcription of E2F target genes. Cyclin-CDK complexes generated during cell cycle progression hyper-phosphorylate Rb, leading to release of Rb from E2Fs;this allows E2F target gene transcription and cell cycle progression. We have identified the mammalian ortholog of Drosophila ecdysoneless (Ecd) protein as a novel and essential regulator of Rb-E2F-dependent cell cycle progression. Loss of Ecd retards the separation of Rb from E2F, arrests cells at G1/S boundary and prevents cell cycle progression. These findings have led to a new model that represents a fundamental shift in the Rb-E2F-dependent cell cycle control paradigm. Notably, Ecd is overexpressed in breast cancer cell lines as well as in ductal carcinoma in situ and infiltrating ductal carcinomas of the breast. Notably, Ecd overexpression produced two opposite phenotypes: p53-dependent senescence in fibroblasts, compared to rapid transit through cell cycle in immortal human mammary epithelial cells (hMECs) that lack p16;and co-overexpression of Ecd with activated Ras induced a dramatic hyper-proliferation and aberrant branching of hMECs in three-dimensional culture. These features are reminiscent of senescence induced by oncogenes, such as Ras. These findings lead us to hypothesize that Ecd is a novel and essential component of Rb-E2F-dependent control of cell cycle progression, and alterations in the levels and/or function of Ecd contribute to oncogenic transformation. Here, we will address these hypotheses using unique and innovative cellular and animal models established by our team. We will examine the structural basis of the role of Ecd in cell cycle progression and its regulation. We will characterize Ecd-induced cellular senescence. We will analyze the consequences of Ecd overexpression in promoting mammary oncogenesis in vitro and in vivo using inducible transgenic mice. Finally, we will determine if Ecd is essential for mammary tumor initiation, progression and maintenance driven by a human breast cancer-relevant oncogene ErbB2 using mammary-specific deletion of Ecd in Ecd-floxed mice. A successful outcome of our studies will elucidate the role of a novel cell cycle control regulator in breast cancer with broad implications for oncogenesis in human cancer, and could help establish Ecd as a potential therapeutic target in cancer.

Public Health Relevance

This proposal will investigate a new and paradigm-shifting mechanism of how cell cycle is regulated. Ecd, the novel cell cycle regulatory protein under study is overexpressed in human breast cancers and initial studies indicate that forced expression of Ecd in normal breast cells pushes them along tumorigenesis. Our studies are therefore focused on investigating the role of Ecd in breast cancer using unique cellular and animal models specifically created for this project. A successful outcome of our studies will likely have broad implications for understanding mechanisms of human cancer and could help establish Ecd as a potential therapeutic target. While our studies are focused on breast cancer, these studies are likely to be of broad significance for human cancer biology and other diseases given the frequent alterations in cell cycle regulatory mechanisms in human cancers and other pathological conditions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA144027-04
Application #
8616349
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Hildesheim, Jeffrey
Project Start
2011-03-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
4
Fiscal Year
2014
Total Cost
$298,894
Indirect Cost
$97,619
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Luan, Haitao; Mohapatra, Bhopal; Bielecki, Timothy A et al. (2018) Loss of the Nuclear Pool of Ubiquitin Ligase CHIP/STUB1 in Breast Cancer Unleashes the MZF1-Cathepsin Pro-oncogenic Program. Cancer Res 78:2524-2535
Iseka, Fany M; Goetz, Benjamin T; Mushtaq, Insha et al. (2018) Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol 200:483-499
Olou, Appolinaire A; Sarkar, Aniruddha; Bele, Aditya et al. (2017) Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response. Mol Cell Biol 37:
Nadeau, Scott A; An, Wei; Mohapatra, Bhopal C et al. (2017) Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 292:3666-3682
Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka et al. (2017) Corrigendum: Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep 7:42320
Mohapatra, Bhopal; Zutshi, Neha; An, Wei et al. (2017) An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. Development 144:1072-1086
Mir, Riyaz A; Lovelace, Jeff; Schafer, Nicholas P et al. (2016) Biophysical characterization and modeling of human Ecdysoneless (ECD) protein supports a scaffolding function. AIMS Biophys 3:195-208
Goetz, Benjamin; An, Wei; Mohapatra, Bhopal et al. (2016) A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget 7:51107-51123
Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya et al. (2016) Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation. Mol Cell Biol 36:2487-502
Griffin, Nicolas I; Sharma, Gayatri; Zhao, Xiangshan et al. (2016) ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC. Breast Cancer Res 18:113

Showing the most recent 10 out of 38 publications