Over 44,500 people in the United States are diagnosed with a primary tumor in the brain or spine each year. Of this group, approximately 20,500 are diagnosed with primary malignant brain tumors. Brain tumors are also the second most common cancer of childhood comprising approximately 25% of all pediatric cancers. It is the leading cause of solid tumor cancer death in children. Mortality rates from brain tumors are extremely high, with a median survival of approximately 12 months. Notably, mortality rates have remained unchanged over the last two decades as malignant gliomas continue to present significant problems for successful clinical treatment with the current regimen of surgery, radiotherapy or chemotherapy. The highly aggressive nature of malignant gliomas - glioblastoma cells rapidly invade the surrounding brain parenchyma - stems from defects in genes that control cell motility. Invasive tumor cells remaining after surgical resection confound clinical management and significantly contribute to the lethality of this disease. Additionally, a chemotherapy and radiotherapy resistant subpopulation of glioma cells retain stem cell-like properties to re-seed the tumor. This leads to recurrence with even poorer prognosis. The glioma stem cell population may harbor defects in genes that control self-renewal, proliferation and differentiation. Effective targeting of these invasive cells and the stem cell population is critical for the improved management and positive clinical outcome in malignant gliomas. The objective of this proposal is to determine if apical-basal polarity signaling is an important molecular element in the invasive pathology and recurrence of gliomas. We have observed that altered apical- basal polarity signaling causes the rapid proliferation and abnormal migration of undifferentiated cells bearing markers of embryonic neural stem cells in the developing chick central nervous system. Based on this previous study, we hypothesize that aberrant function of apical-basal polarity signaling pathway may play a central role in the invasive progression and growth of glioblastoma.
The specific aims of this proposal are: (i) to validate our preliminary observation of a positive association between elevated apical-basal polarity signaling pathway components and clinical glioblastoma, and to investigate the function of this pathway in glioma pathology. This study is likely to elucidate the molecular function of apical-basal polarity signaling pathway in glioma invasion, growth and progression, and provide the proof-of-concept for targeting this pathway as a novel strategy for glioblastoma therapy. Our long-term goal is the rational targeting of this pathway in an improved therapeutic paradigm for gliomas.

Public Health Relevance

Prospects for better efficacy of glioma treatment protocols hinge on the successful unraveling of molecular pathways that control the aberrant invasion and recurrence of glioma tumors. Our experiments are designed to identity a novel molecular element that aids glioma invasion and growth, and understand the molecular basis of its function. Successful completion of this study will establish the proof-of-concept for rational therapeutic targeting of a novel, pharmacologically tractable, drug discovery target to specifically counter glioma tumor spread and growth.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
3R01CA149258-04S1
Application #
8649817
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Ogunbiyi, Peter
Project Start
2010-07-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
4
Fiscal Year
2013
Total Cost
$65,622
Indirect Cost
$22,307
Name
University of Arizona
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Melemedjian, Ohannes K; Tillu, Dipti V; Moy, Jamie K et al. (2014) Local translation and retrograde axonal transport of CREB regulates IL-6-induced nociceptive plasticity. Mol Pain 10:45
Perry, Anthony S; Furusato, Bungo; Nagle, Raymond B et al. (2014) Increased aPKC Expression Correlates with Prostatic Adenocarcinoma Gleason Score and Tumor Stage in the Japanese Population. Prostate Cancer 2014:481697
Kusne, Yael; Goldberg, Emily L; Parker, Sara S et al. (2014) Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice. Age (Dordr) 36:199-212
Kusne, Yael; Carrera-Silva, Eugenio A; Perry, Anthony S et al. (2014) Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNF? in glioblastoma. Sci Signal 7:ra75
Melemedjian, Ohannes K; Tillu, Dipti V; Asiedu, Marina N et al. (2013) BDNF regulates atypical PKC at spinal synapses to initiate and maintain a centralized chronic pain state. Mol Pain 9:12
Parker, Sara S; Mandell, Edward K; Hapak, Sophie M et al. (2013) Competing molecular interactions of aPKC isoforms regulate neuronal polarity. Proc Natl Acad Sci U S A 110:14450-5
Melemedjian, Ohannes K; Khoutorsky, Arkady; Sorge, Robert E et al. (2013) mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain 154:1080-91
Price, Theodore J; Ghosh, Sourav (2013) ZIPping to pain relief: the role (or not) of PKM? in chronic pain. Mol Pain 9:6
King, Tamara; Qu, Chaoling; Okun, Alec et al. (2012) Contribution of PKM?-dependent and independent amplification to components of experimental neuropathic pain. Pain 153:1263-73
Asiedu, Marina N; Tillu, Dipti V; Melemedjian, Ohannes K et al. (2011) Spinal protein kinase M ? underlies the maintenance mechanism of persistent nociceptive sensitization. J Neurosci 31:6646-53