Chromosomal rearrangements resulting in alteration of gene expression are a major cause of hematological malignancies. This grant application is focused on the characterization of the molecular functions and biochemical properties of the MLL family of proteins and its chimeras in the hope of advancing our understanding of the molecular mechanisms of rearrangement-based leukemia. Our studies during the past five years have considerably expanded our molecular understanding of the role of MLL1 and one of its translocation partners, the ELL protein. We and others have identified MLL, MLL-related proteins and their complexes as histone H3 lysine 4 (H3K4) methylases. Through our biochemical and genetic screens, we have also identified the molecular machinery required for the proper enzymatic activity of the H3K4 methylases. We have also demonstrated that the ELL protein, one of the MLL1 partners in leukemia, is a bona fide RNA polymerase II elongation factor regulating the transcriptional properties of the elongating form of RNA polymerase II. These studies have helped to create the paradigm that posttranslational modifications of chromatin by methylation and transcriptional elongation control participate in the etiology of leukemia. Building on these discoveries, the goals of this proposal are to characterize the gene targets of the mammalian H3K4 methylases and to understand the molecular mechanism of translocation-based leukemia via MLL-chimeras. These goals will be aggressively pursued via two specific aims.
Specific Aim 1 is focused on identifying the gene targets of the six mammalian H3K4 methylases and to define how these methylases acquire their gene target specificity and understand the biological significance of H3K4 methylation at such sites.
Specific Aim 2 is focused on the biochemical isolation of several of the MLL-translocation chimeras and on defining their molecular composition in the hope of identifying a molecular commonality among the chimeras, which may result in the pathogenesis of a leukemic phenotype. We will take advantage of a variety of biochemical, molecular and genetic tools to address the aims proposed in this application. The proposed studies should (i) have a fundamental impact on our understanding of how MLL translocations result in the pathogenesis of hematological malignancies; and (ii) be instrumental for our understanding of the diverse roles that the mammalian H3K4 methylase machinery plays during development and differentiation. The information provided by these studies have the potential of some day proving helpful to investigators attempting to design rational approaches for the treatment of certain human malignancies using target specific therapeutics.
Relevance: The focus of this application is on a group of proteins (MLL1-4 and Set1A/B) that regulate the posttranslational modification of the chromatin of living cells by methylation. This modification can alter cell growth, division, and differentiation properties. Importantly, one of these genes, the MLL1 is found in translocation-based leukemia. Therefore, detailed knowledge of the molecular functions of MLL and its family members will be critical for the detection, diagnosis and treatment of human leukemia.
Showing the most recent 10 out of 33 publications