Colorectal cancer (CRC) is the second leading cause of cancer-related death and the third most common cancer in the US. Inflammation is a key contributor to carcinogenesis, and there is an increased incidence of cancer in patients with chronic inflammatory diseases. Inflammation in the tumor microenvironment can enhance cancer cell proliferation, survival, and migration. A chronically inflamed colonic mucosa is pro- neoplastic;and ulcerative colitis (UC) is one of the highest risk factors for the development of CRC. Recent data suggest that immune responses to commensal gut bacteria may influence the development of CRC and colitis-associated colorectal cancer (caCRC). However, how the gut microbiota shapes mucosal immune responses leading to chronic inflammation and CRC is not well understood. Important questions include: (1) what are the features of the gut microbiota that elicit chronic inflammatory responses that drive caCRC and (2) how do mucosal innate immune subsets function in the evolving tumor microenvironment. This proposal builds on our recent studies of a spontaneous mouse model of UC and caCRC that is driven genetically by T-bet deficiency in the absence of adaptive immunity, and stems from our preliminary data on the microbial communities that instigate colitis.
Our specific aims are to: 1) define the role of fecal microbial community members in initiating the innate immune driven inflammatory cascades that drive caCRC;2) characterize monocyte populations and their recruitment, function, and response to the intestinal microbiota across the colitis r dysplasia r adenocarcinoma transition;and 3) perform a functional genomic analysis of fecal microbial communities across the colitis r dysplasia r adenocarcinoma transition. We employ cell biology, immunology, and microbiology techniques and sequencing technology as experimental tools, in conjunction, with computational methodology capable of integrating these diverse data sets. By analyzing the function of intestinal microbial communities and innate immune subsets in driving pro-neoplastic inflammation, this proposal will advance basic understanding of the contribution of host-microbial interactions to the evolution of a tumor microenvironment. Since we utilize a mouse model that is reminiscent of UC and recapitulates key features of human IBD-associated CRC, we anticipate that our data will be applicable for human disease and for the development of anti-inflammatory host and/or microbe directed therapeutics that will prevent the development and progression of cancer.

Public Health Relevance

Colorectal cancer is the second leading cause of cancer-related death and the third most common cancer in the US;and inflammation is a key contributor to carcinogenesis. Our proposal examines the role of inflammatory cells and gut bacteria in driving cancer in the colon.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA154426-01
Application #
8021447
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Daschner, Phillip J
Project Start
2011-03-18
Project End
2016-02-29
Budget Start
2011-03-18
Budget End
2012-02-29
Support Year
1
Fiscal Year
2011
Total Cost
$303,544
Indirect Cost
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Public Health
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
Liu, Li; Tabung, Fred K; Zhang, Xuehong et al. (2018) Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol 16:1622-1631.e3
Cao, Yin; Wu, Kana; Mehta, Raaj et al. (2018) Long-term use of antibiotics and risk of colorectal adenoma. Gut 67:672-678
Ogino, Shuji; Nowak, Jonathan A; Hamada, Tsuyoshi et al. (2018) Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 67:1168-1180
Liu, Li; Nishihara, Reiko; Qian, Zhi Rong et al. (2017) Association Between Inflammatory Diet Pattern and Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor. Gastroenterology 153:1517-1530.e14
Geller, Leore T; Barzily-Rokni, Michal; Danino, Tal et al. (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357:1156-1160
Rooks, Michelle G; Veiga, Patrick; Reeves, Analise Z et al. (2017) QseC inhibition as an antivirulence approach for colitis-associated bacteria. Proc Natl Acad Sci U S A 114:142-147
Mehta, Raaj S; Nishihara, Reiko; Cao, Yin et al. (2017) Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA Oncol 3:921-927
Haber, Adam L; Biton, Moshe; Rogel, Noga et al. (2017) A single-cell survey of the small intestinal epithelium. Nature 551:333-339
Yasuda, Koji; Hsu, Tiffany; Gallini, Carey A et al. (2017) Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice. mSystems 2:
Mima, Kosuke; Nishihara, Reiko; Qian, Zhi Rong et al. (2016) Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65:1973-1980

Showing the most recent 10 out of 43 publications