Tumor-induced angiogenesis plays a central role in the progression of tumors to malignancy, provides the critical transport of blood-born therapies into the tumor space, and supplies oxygen to effectuate oxygen-dependent radiological and light-based therapies. Pre-clinical research in tumor angiogenesis and tumor microvascular function has traditionally relied on histological methods, which suffer from well-known limitations, or fluorescence-based confocal and multiphoton microscopy, which provide high- resolution three-dimensional mapping of multiple parameters but support imaging over limited fields of view and depths of penetration. By contrast, optical coherence tomography approaches support a relatively larger field of view and depth of penetration and have the potential, if translated into the biological laboratory, to reveal critical and previously hidden aspects of the tumor microvasculature. In our laboratory, we have demonstrated the principles of a unique preclinical optical imaging technology that will be a powerful tool for investigating blood vessels and the biological microenvironment in vivo. The technology, optical frequency domain angiography (OFDA), supports high- resolution three-dimensional imaging similar to multiphoton and confocal microscopy. In this proposal, we propose optical, engineering, computational, and software solutions that will be required to realize a practical and robust OFDA instrument for translation into the biological laboratory. Our approach will unite investigators and resources at the Massachusetts General Hospital (MGH) and Physical Sciences, Incorporated (PSI). Innovations to the OFDA instrumentation and core algorithms will be performed by the MGH team, while construction of the computational hardware and software that is needed to improve processing will be performed by the PSI team. Our goal is to move OFDA technology from the engineering to the biological laboratory, which may catalyze research into basic cancer biology and cancer therapeutics.

Public Health Relevance

In nearly all aspects of cancer biology and cancer therapeutics, the tumor microvasculature plays a significant role, and preclinical imaging tools are invaluable in investigations of the tumor microvasculature. In this grant, we propose to develop a preclinical optical frequency domain angiography instrument and deliver it to the biological investigator.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA163528-04
Application #
8827704
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (57))
Program Officer
Baker, Houston
Project Start
2012-05-04
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
4
Fiscal Year
2015
Total Cost
$278,602
Indirect Cost
$117,717
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Nam, Ahhyun S; Easow, Jeena M; Chico-Calero, Isabel et al. (2018) Wide-Field Functional Microscopy of Peripheral Nerve Injury and Regeneration. Sci Rep 8:14004
Inoue, Yoshitaka; Liu, Yuk Ming; Otawara, Masayuki et al. (2018) Resolvin D2 Limits Secondary Tissue Necrosis After Burn Wounds in Rats. J Burn Care Res 39:423-432
Jones, Dennis; Meijer, Eelco F J; Blatter, Cedric et al. (2018) Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci Transl Med 10:
Siddiqui, Meena; Nam, Ahhyun S; Tozburun, Serhat et al. (2018) High-speed optical coherence tomography by circular interferometric ranging. Nat Photonics 12:111-116
Blatter, Cedric; Meijer, Eelco F J; Padera, Timothy P et al. (2018) Simultaneous measurements of lymphatic vessel contraction, flow and valve dynamics in multiple lymphangions using optical coherence tomography. J Biophotonics 11:e201700017
Meijer, Eelco F J; Blatter, Cedric; Chen, Ivy X et al. (2017) Lymph node effective vascular permeability and chemotherapy uptake. Microcirculation 24:
Khazaeinezhad, Reza; Siddiqui, Meena; Vakoc, Benjamin J (2017) 16??MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating. Opt Lett 42:2046-2049
Meijer, Eelco F J; Jeong, Han-Sin; Pereira, Ethel R et al. (2017) Murine chronic lymph node window for longitudinal intravital lymph node imaging. Nat Protoc 12:1513-1520
Blatter, Cedric; Meijer, Eelco F J; Nam, Ahhyun S et al. (2016) In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography. Sci Rep 6:29035
Oguz, Ipek; Abramoff, Michael D; Zhang, Li et al. (2016) 4D Graph-Based Segmentation for Reproducible and Sensitive Choroid Quantification From Longitudinal OCT Scans. Invest Ophthalmol Vis Sci 57:OCT621-OCT630

Showing the most recent 10 out of 24 publications