In clinical cancer genetics, molecular diagnostic testing is now commonly performed looking for pathogenic mutations in cancer susceptibility genes. A critical challenge in the field is interpreting whether a genetic variant causes disease o not. Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by germline mutations in one of four DNA mismatch repair (MMR) genes- MLH1, MSH2, MSH6, and PMS2. About 20-30% of the variants identified in MMR and other cancer susceptibility genes are missense or non-coding changes that may or may not be pathogenic, but whose effects on function and disease cannot be interpreted easily. They are designated Unclassified Variants or Variants of Unknown Significance (VUS). Classifying variants as pathogenic and neutral significantly improves the management of LS and other hereditary cancer syndromes by identifying which individuals carry a harmful genetic variant and thus benefit from screening and therapeutic measures. The scientific problem is to classify as either pathogenic or not pathogenic all MMR gene variants found by genetic testing for LS. Correct classification of variants requires integrating clinico-pathologic, epidemiologic, bioinformatic, and in vitro data. The optimal way to use these methods is unknown. Our hypothesis is that clinical, in silico, and laboratory data can be integrated qualitatively and quantitatively to classify all variants in MMR genes. This study will use a large set of MMR variants and refine a method that integrates these data.
Aim 1. Development of reference sets of gene variants in MMR genes that are classified by clinical and epidemiological data as Likely Pathogenic, Likely Neutral, and Unknown. These sets will be used to calibrate and refine a classification model integrating multiple data types.
Aim 2. Analysis of individual data types to classify variants: To assign and calibrate predictive values and odds ratios for pathogenicity for multiple data types, including: 1) clinical and family history, 2) tumor histology 3) tumor immunohistochemistry for MMR proteins, 4) tumor Microsatellite Instability, 5) tumor MLH1 methylation, BRAF V600E mutation, 6) in vitro assessment of missense variants by functional assays, 7) in silico assessment of missense variants by sequence and structure-based algorithms, 8) in vitro assessment of exonic variants by splicing assays, and 9) in silico predictions of splice effects from exonic sequence variants.
Aim 3. Development of a model for integrating data. These models will pass through three stages: (i) a qualitative model, (ii) a quantitative Bayesian model that considers each data type independently, and (iii) a two component mixture model that considers all validated data types simultaneously. Relevance: Interpreting which genetic variants increase risk for hereditary cancer and which do not can be difficult. This research uses clinicopathologic, epidemiologic, in vitro, and in silico studies of MMR genes to interpret which genetic changes cause LS and which are harmless. Improving the interpretation of genetic variation will improve the management of hereditary cancers and other genetic diseases.

Public Health Relevance

For patients suspected of having Lynch syndrome, the most common type of hereditary colon cancer, genetic testing has become a common and important part of clinical cancer genetics. However, about 20-30% of DNA changes ('variants') that are found through such testing cannot be interpreted, and overcoming this problem is critical to improving the management of Lynch syndrome and all cancer predisposition syndromes. The goal of this project is to develop efficient methods for classifying genetic variants as either disease-causing or not, which will immediately improve the management of hereditary cancer syndromes and other genetic disorders.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA164944-03
Application #
8819520
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Filipski, Kelly
Project Start
2013-03-01
Project End
2016-02-29
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Drost, Mark; Tiersma, Yvonne; Thompson, Bryony A et al. (2018) A functional assay-based procedure to classify mismatch repair gene variants in Lynch syndrome. Genet Med :
Tavtigian, Sean V; Greenblatt, Marc S; Harrison, Steven M et al. (2018) Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet Med 20:1054-1060
Feng, Bing-Jian (2017) PERCH: A Unified Framework for Disease Gene Prioritization. Hum Mutat 38:243-251
Tricarico, Rossella; Kasela, Mariann; Mareni, Cristina et al. (2017) Assessment of the InSiGHT Interpretation Criteria for the Clinical Classification of 24 MLH1 and MSH2 Gene Variants. Hum Mutat 38:64-77
Peña-Diaz, Javier; Rasmussen, Lene Juel (2016) Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair (Amst) 38:147-54
Vallée, Maxime P; Di Sera, Tonya L; Nix, David A et al. (2016) Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants. Hum Mutat 37:627-39
Erten, Mujde Z; Fernandez, Luca P; Ng, Hank K et al. (2016) Universal Versus Targeted Screening for Lynch Syndrome: Comparing Ascertainment and Costs Based on Clinical Experience. Dig Dis Sci 61:2887-2895
Shia, Jinru (2015) Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma. Semin Diagn Pathol 32:352-61
Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul et al. (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46:107-115
Drost, Mark; Koppejan, Hester; de Wind, Niels (2013) Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat 34:1477-80