Breast cancer is the most common malignancy among women worldwide. Breast cancers are classified into different categories based on their molecular and histopathological features. While disease severity can be stratified, a profound problem is the lack of effectiveness of many of the current treatment regimens. One of the greatest challenges in breast cancer management is recurrent disease, which affects 30 percent of breast cancer patients and is usually incurable. Part of the problem is that certain tumor cells remain undetected in the body for extended periods of time before they suddenly erupt into overt, life-threatening cancers. Patients with some types of breast cancers experience recurrence within months of their original diagnosis, while other patients relapse as late as 15-20 years after treatment. It is difficult to predict whether tumor cells that have spread throughou a patient's body will remain inactive or whether they will begin to grow and, if so, what triggers their growth. We propose to address these clinical problems by using our novel experimental mouse model system that gave us important insights into breast cancer pathophysiology. We learned that some tumors that would otherwise remain dormant can respond to certain growth factors and bone marrow-derived cells that circulate throughout the body, which we collectively refer to as the systemic environment. However, tumors are not just passive recipients of circulating growth factors and cells. Instead, certain tumors actively create a systemic environment that is favorable to the growth of disseminated tumor cells that otherwise would not grow in the normal, unperturbed systemic environment. We contend that many aspects of breast cancer biology can only be explained by a detailed understanding of both activation and response to the systemic environment. We propose to build upon our fundamental observations with the following specific aims: 1. Determine which types of breast cancers are capable of establishing a tumor-supportive systemic environment and how they do so. 2. Define the properties of breast cancers that are capable of responding to a tumor-promoting systemic environment. 3. Determine whether inhibiting certain aspects of the tumor-promoting environment will prevent the growth of otherwise indolent tumors. Understanding how certain tumors activate the systemic environment should help us to design therapies to inhibit their pro-tumorigenic functions. As importantly, understanding the properties of tumor cells that respond to these systemic factors should allow us to determine whether a patient harbors these responsive cells. These mechanistic studies have the potential to pave the way for more effective breast cancer therapies.

Public Health Relevance

We propose to elucidate the pathophysiology of breast cancer relapse by building on our observations that have yielded fundamental insights into tumor progression. These observations suggest that cancer is a disease that is capable of creating and responding to a pro-tumorigenic host systemic environment. The knowledge we obtain from our proposed experiments should provide entry points for preclinical development of specific breast cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA166284-07
Application #
9536712
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Woodhouse, Elizabeth
Project Start
2012-09-18
Project End
2018-12-31
Budget Start
2018-08-01
Budget End
2018-12-31
Support Year
7
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Ubellacker, Jessalyn M; Baryawno, Ninib; Severe, Nicolas et al. (2018) Modulating Bone Marrow Hematopoietic Lineage Potential to Prevent Bone Metastasis in Breast Cancer. Cancer Res 78:5300-5314
Olive, Jessica F; Qin, Yuanbo; DeCristo, Molly J et al. (2018) Accounting for tumor heterogeneity when using CRISPR-Cas9 for cancer progression and drug sensitivity studies. PLoS One 13:e0198790
Lee, Jaewon J; van de Ven, Robert A H; Zaganjor, Elma et al. (2018) Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3. Proc Natl Acad Sci U S A 115:7057-7062
CastaƱo, Zafira; San Juan, Beatriz P; Spiegel, Asaf et al. (2018) IL-1? inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol 20:1084-1097
Henry, Whitney S; Laszewski, Tyler; Tsang, Tiffany et al. (2017) Aspirin Suppresses Growth in PI3K-Mutant Breast Cancer by Activating AMPK and Inhibiting mTORC1 Signaling. Cancer Res 77:790-801
Goel, Shom; DeCristo, Molly J; Watt, April C et al. (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471-475
Ubellacker, Jessalyn M; Haider, Marie-Therese; DeCristo, Molly J et al. (2017) Zoledronic acid alters hematopoiesis and generates breast tumor-suppressive bone marrow cells. Breast Cancer Res 19:23
Ubellacker, Jessalyn M; McAllister, Sandra S (2016) The unresolved role of systemic factors in bone metastasis. J Bone Oncol 5:96-99
Qin, Yuanbo; McAllister, Sandra S (2014) SPSB1 may have MET its match during breast cancer recurrence. Cancer Discov 4:760-1
Alspach, Elise; Flanagan, Kevin C; Luo, Xianmin et al. (2014) p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov 4:716-29

Showing the most recent 10 out of 17 publications