Pancreatic cancer (PanC) is the fourth leading cause of cancer-related death for both men and women in the U.S. Better understanding of the etiology and developing risk prediction models for early detection and prevention are urgently needed for this rapidly fatal disease. The majority of PanC are caused by the interplay of both genetic and environmental factors. Known risk factors for PanC include cigarette smoking, obesity, long-term type II diabetes, and family history. In addition, our previous case-control study has shown that excess body mass index (BMI) in young adulthood confers a higher risk of PanC than weight gain at later age. Recent genome-wide association studies (GWAS) have identified several chromosomal regions and genes in association with risk of PanC (PanScan). Our pathway analyses of the PanScan GWAS data have uncovered several novel biological pathways associated with the risk for PanC. However, it remains unknown how environmental or host risk factors modify the association between genetic factors and the PanC risk, which knowledge is critical to better understanding of the etiology and developing a risk prediction model and early intervention strategies for PanC. The goal of this project is to identify gene-environment interactions and develop and validate a risk prediction model including both common and rare genetic variants using the PanScan GWAS data and the exposure information of over 2,200 case-control pairs and an ongoing ExomeChip-based study of PanC genotyping both common SNPs and >240,000 rare functional exonic variants in over 4,100 cases and 4,700 controls from six case-control studies in the Pancreatic Cancer Case Control Consortium (PanC4) and a nested case-control study from Europe (EPIC). We will validate the absolute risk prediction model in two large prospective cohorts: the Atherosclerosis Risk in Communities (ARIC) cohort of 15,000 individuals and the Kaiser Permanente cohort of 100,000 individuals. We will also develop novel statistical methods to identify genes modifying the association between changing BMI at different age periods and PanC risk using the unique dataset from a case-control study of PanC conducted at MD Anderson Cancer Center. Our proposed project hinges on novel integration of GWAS, ExomeChip, exposure data of a large number of PanC cases and controls, recently developed powerful statistical methods and analysis strategies for detecting genome-wide gene/pathway-environment interactions and polygenic approaches to genetic risk prediction. The work proposed here is expected not only to advance our understanding of the etiology of PanC and delineate how genes and lifestyle or host factors modify the risk of PanC, but also to greatly facilitate identification of high-risk individuals, and thus, contribute to early detection, improved survival and prevention of PanC. The novel statistical methods developed here are also applicable to other cancers and complex disease, and we will develop user-friendly software packages for public use.

Public Health Relevance

Over 43,900 new cases of pancreatic cancer are expected to occur in the US in 2012, almost all rapidly fatal. This project will not only advance our understanding of the etiology of pancreatic cancer and delineate how genes and lifestyle or host factors modify the risk of pancreatic cancer, but also will facilitate identification of high-risk individuals, and thus, contribute to early detection, prevention, and improved survival of pancreatic cancer. The novel statistical methods developed here are also applicable to other cancers and complex disease, and we will develop user-friendly software packages for public use.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA169122-03
Application #
8867170
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Marcus, Pamela M
Project Start
2013-09-17
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Hong, Chuan; Ning, Yang; Wei, Peng et al. (2017) A semiparametric model for vQTL mapping. Biometrics 73:571-581
McAllister, Kimberly; Mechanic, Leah E; Amos, Christopher et al. (2017) Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Am J Epidemiol 186:753-761
Ritchie, Marylyn D; Davis, Joe R; Aschard, Hugues et al. (2017) Incorporation of Biological Knowledge Into the Study of Gene-Environment Interactions. Am J Epidemiol 186:771-777
Tang, Hongwei; Wei, Peng; Chang, Ping et al. (2017) Genetic polymorphisms associated with pancreatic cancer survival: a genome-wide association study. Int J Cancer 141:678-686
Wei, Peng; Yang, Yang; Guo, Xinjian et al. (2016) Identification of an Association of TNFAIP3 Polymorphisms With Matrix Metalloproteinase Expression in Fibroblasts in an Integrative Study of Systemic Sclerosis-Associated Genetic and Environmental Factors. Arthritis Rheumatol 68:749-60
Kim, Taebeom; Wei, Peng (2016) Incorporating ENCODE information into association analysis of whole genome sequencing data. BMC Proc 10:257-261
Cao, Ying; Rajan, Suja S; Wei, Peng (2016) Mendelian randomization analysis of a time-varying exposure for binary disease outcomes using functional data analysis methods. Genet Epidemiol 40:744-755
Wei, Peng; Cao, Ying; Zhang, Yiwei et al. (2016) On Robust Association Testing for Quantitative Traits and Rare Variants. G3 (Bethesda) 6:3941-3950
Xu, Li; Tang, Hongwei; El-Naggar, Adel K et al. (2015) Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study. PLoS One 10:e0128753
Cao, Ying; Maxwell, Taylor J; Wei, Peng (2015) A family-based joint test for mean and variance heterogeneity for quantitative traits. Ann Hum Genet 79:46-56

Showing the most recent 10 out of 20 publications