Enzyme activities are important biomarkers for cancer diagnoses and assessing chemotherapies. We have developed MRI contrast agents that are detected via Chemical Exchange Saturation Transfer (CEST) and that are responsive to enzyme activity. We have also developed CEST MRI methods that can detect these agents within in vivo tumor tissues in mouse models of human cancers. Importantly, we can selectively detect an enzyme-responsive agent and an unresponsive """"""""control"""""""" agent during the same study in the same tissue location, which improves our evaluation of enzyme activity within the mouse model. Just as multiple fluorophores have revolutionized the evaluation of enzyme activities during in vitro and ex vivo studies, CEST agents and CEST MRI has potential to revolutionize the evaluation of enzyme activities in vivo. We propose to build on our recent research successes by linking enzyme-responsive and control agents to create a dimeric agent, by comparing paramagnetic and diamagnetic CEST agents, and by optimizing the saturation period of the CEST MRI acquisition protocol in order to improve the detection sensitivity of CEST MRI. We also propose to develop enzyme-responsive CEST agents that semi-quantitatively detect the activities of urokinase Plasminogen Activator (uPA) in mouse models of pancreatic cancer, Prostate Specific Membrane Antigen (PSMA) in mouse models of prostate cancer, and transglutaminase (TG2) in mouse models of breast cancer. We propose to use these CEST agents and our in vivo CEST MRI methodology to investigate three biomedical aims: A) to predict the effect of chemotherapies before they are administered to mouse models;B) to evaluate early response to chemotherapies;C) to investigate our hypothesis that enzyme activity is a more accurate biomarker than enzyme expression for predicting and evaluating therapeutic effects. Together, these studies address our overarching goal of eventually using CEST agents and CEST MRI to tailor the choice of chemotherapy and treatment regimen for each individual patient, in order to support the paradigm of personalized medicine.

Public Health Relevance

We propose to continue to develop CEST agents and CEST MRI methods that detect enzyme activities within in vivo mouse models of cancer. We propose to use our CEST agents and CEST MRI methods to evaluate chemotherapies and to assess whether enzyme activity is a better biomarker than enzyme expression.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA169774-01
Application #
8353415
Study Section
Clinical Molecular Imaging and Probe Development (CMIP)
Program Officer
Zhang, Huiming
Project Start
2012-07-01
Project End
2017-05-31
Budget Start
2012-07-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$532,809
Indirect Cost
$177,720
Name
University of Arizona
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio (2018) Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI. Magn Reson Med 80:1158-1164
Sinharay, Sanhita; Randtke, Edward A; Howison, Christine M et al. (2018) Detection of Enzyme Activity and Inhibition during Studies in Solution, In Vitro and In Vivo with CatalyCEST MRI. Mol Imaging Biol 20:240-248
Jones, Kyle M; Pollard, Alyssa C; Pagel, Mark D (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47:11-27
Hupple, Clinton W; Morscher, Stefan; Burton, Neal C et al. (2018) A light-fluence-independent method for the quantitative analysis of dynamic contrast-enhanced multispectral optoacoustic tomography (DCE MSOT). Photoacoustics 10:54-64
Jones, Kyle M; Stuehm, Carol A; Hsu, Charles C et al. (2017) Imaging Lung Cancer by Using Chemical Exchange Saturation Transfer MRI With Retrospective Respiration Gating. Tomography 3:201-210
Sinharay, Sanhita; Howison, Christine M; Baker, Amanda F et al. (2017) Detecting in vivo urokinase plasminogen activator activity with a catalyCEST MRI contrast agent. NMR Biomed 30:
Sinharay, Sanhita; Randtke, Edward A; Jones, Kyle M et al. (2017) Noninvasive detection of enzyme activity in tumor models of human ovarian cancer using catalyCEST MRI. Magn Reson Med 77:2005-2014
Daryaei, Iman; Randtke, Edward A; Pagel, Mark D (2017) A biomarker-responsive T2exMRI contrast agent. Magn Reson Med 77:1665-1670
Daryaei, Iman; Jones, Kyle M; Pagel, Mark D (2017) Detection of DT-diaphorase Enzyme with a ParaCEST MRI Contrast Agent. Chemistry 23:6514-6517
Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D et al. (2016) Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm. J Magn Reson 263:184-192

Showing the most recent 10 out of 27 publications