The expression and activity of Src family kinases (SFKs) are highly elevated in numerous human cancers, including prostate cancer. SFKs are pleiotrophic activators in several signal transduction pathways. Targeting SFKs has a favorable inhibitory effect on proliferation of tumorigenic cells and bone metastasis in advanced castration-resistant prostate cancer patients. The SH4 domain of SFKs contains conserved sites for myristoylation, and palmitoylation modification depending on SFK members, which regulate SFKs trafficking intracellularly. The localization of SFKs at the cytoplasmic microdomain is critical to mediating cell signaling, exhibiting their activity, and illuminating their tumorigenic potential in cancer cells. Preliminary data suggest that myristoylated, but not palmitoylated, SFKs facilitate prostate tumorigenesis. In this proposal, investigators at the Medical University of South Carolina hypothesize that targeting myristoylation of SFKs inhibits their tumorigenic potential in prostate cancer. They will investigate if loss of myristoylation will attenuate SFK-induced tumorigenesis, inhibit Src kinase to interact with down- stream substrates such as androgen receptor, and suppress SFK-mediated paracrine signaling and over- expression of FGF10-induced tumorigenesis. The investigators will utilize myristoylation-defective SFK mutants and in complement a small molecule N-myristoyltransferase inhibitor, COPP-24, in a prostate regeneration assay to define the role of myristoylation in prostate tumorigenesis in vivo. This study will demonstrate that myristoylation of SFKs is a target for inhibiting prostate tumorigenesis and will evaluate the efficacy of a novel anti-neoplastic agent that blocks myristoylation of SFKs in treating prostate cancer.

Public Health Relevance

The expression and activity of Src family kinases (SFKs) are highly elevated in numerous human cancers, including prostate cancer. This proposal will demonstrate that myristoylation of SFKs is a target for inhibiting prostate tumorigenesis, and evaluate the efficacy of a novel anti-neoplastic agent that blocks myristoylation of SFKs in treating prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
4R01CA172495-04
Application #
9096726
Study Section
Special Emphasis Panel (ZRG1)
Project Start
2013-07-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Georgia
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Li, Qianjin; Ingram, Lishann; Kim, Sungjin et al. (2018) Paracrine Fibroblast Growth Factor Initiates Oncogenic Synergy with Epithelial FGFR/Src Transformation in Prostate Tumor Progression. Neoplasia 20:233-243
Li, Qianjin; Alsaidan, Omar A; Rai, Sumit et al. (2018) Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells. J Biol Chem 293:10547-10560
Sulejmani, Essilvo; Cai, Houjian (2018) Targeting protein myristoylation for the treatment of prostate cancer. Oncoscience 5:3-5
Han, Zhen; Wu, Hong; Kim, Sunjoo et al. (2018) Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first). J Biol Chem 293:3410-3420
Li, Qianjin; Alsaidan, Omar Awad; Ma, Yongjie et al. (2018) Pharmacologically targeting the myristoylation of the scaffold protein FRS2? inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem 293:6434-6448
Kim, Sungjin; Alsaidan, Omar Awad; Goodwin, Octavia et al. (2017) Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Res 77:6950-6962
Kim, Sungjin; Yang, Xiangkun; Li, Qianjin et al. (2017) Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice. J Biol Chem 292:18422-18433
Yang, Xiangkun; Ma, Yongjie; Li, Ning et al. (2017) Development of a Method for the Determination of Acyl-CoA Compounds by Liquid Chromatography Mass Spectrometry to Probe the Metabolism of Fatty Acids. Anal Chem 89:813-821
Alsaggar, Mohammad; Yao, Qian; Cai, Houjian et al. (2016) Differential growth and responsiveness to cancer therapy of tumor cells in different environments. Clin Exp Metastasis 33:115-24
Coe, Genevieve L; Redd, Priscilla S; Paschall, Amy V et al. (2016) Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Sci Rep 6:30816

Showing the most recent 10 out of 11 publications