DNA damage response (DDR) is a complex signal transduction pathway, which is extremely important to maintain genomic stability and prevent carcinogenesis by counteracting the deleterious effects of DNA damage. In response to replication stress or UV irradiation, the primary event of DDR is to activate kinases ATR and Chk1, which in turn trigger multiple physiological processes, including DNA synthesis inhibition, DNA repair, and cell cycle delay, transcription, etc. ATR plays a key role in Chk1 activation and DNA synthesis inhibition in response to DNA damage. However, how ATR coordinates with various DDR components to activate Chk1 and how ATR targets replication apparatus to inhibit DNA synthesis remain largely unknown in mammalian cells. We have demonstrated that human And-1 acts as a key component of replisome at replication forks for DNA replication. We now have solid preliminary data indicating that And-1 is also involved in the regulation of checkpoint and DNA synthesis in response to DNA damage. Thus, elucidating the role of And-1 in DDR will fill in critical knowledge gaps of DDR signaling. Building upon our recently published work and our extensive new data, in this proposal we described a series of innovative, hypothesis-driven studies to elucidate how human And-1 regulates checkpoint activation and DNA synthesis in response to UV irradiation and replication stress. First, we will determine the mechanism of how And-1 is recruited to DNA damage sites using both biochemical and structural analyses. Second, we will determine how And-1 acts as a unique replisome component to regulate checkpoint activation by impacting interplay among multiple key DDR components including ATR, Rad17, Claspin, and Timeless-Tipin at stalled replication forks using molecular and structural analyses. Finally, we will determine mechanism by which And-1 governs DNA synthesis in response to DNA damage by carrying out an innovative approach that combines multiple cutting edge technologies including single-molecule analyses, iPOND, and mass spectrometry. Given that targeting the circuitry of DNA damage response has been a key focus for the development of anti-cancer drugs, proposed work will not only advance the field by identifying new components and acquiring in-depth mechanistic understanding of DNA damage response, but also provide us with new strategies for the development of highly specific anti-cancer therapies targeting And-1 or And-1-dependent processes.

Public Health Relevance

DNA damage response (DDR) is a complex signal transduction pathway that is extremely important to maintain genomic stability and prevent tumorigenesis. This grant proposal is designed to delineate a novel mechanism by which And-1 regulates checkpoint activation and DNA synthesis. Therefore, completion of this project will not only significantly advance our knowledge about genomic stability maintenance but also provide us with new strategies for the development of highly specific anti-cancer therapies by targeting And-1 or And-1-dependent processes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA177898-02
Application #
8848359
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Pelroy, Richard
Project Start
2014-07-01
Project End
2019-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
George Washington University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
043990498
City
Washington
State
DC
Country
United States
Zip Code
20052
Zhou, Wei; Sun, Wei; Yung, Mingo M H et al. (2018) Autocrine activation of JAK2 by IL-11 promotes platinum drug resistance. Oncogene 37:3981-3997
Li, Yongming; Li, Zongzhu; Wu, Ruiqin et al. (2017) And-1 is required for homologous recombination repair by regulating DNA end resection. Nucleic Acids Res 45:2531-2545
Dai, Zhi-Jun; Liu, Xing-Han; Wang, Meng et al. (2017) IL-18 polymorphisms contribute to hepatitis B virus-related cirrhosis and hepatocellular carcinoma susceptibility in Chinese population: a case-control study. Oncotarget 8:81350-81360
Wang, Meng; Tian, Tian; Ma, Xiaobin et al. (2017) Genetic polymorphisms in caveolin-1 associate with breast cancer risk in Chinese Han population. Oncotarget 8:91654-91661
Tian, Tian; Wang, Meng; Zhu, Wenge et al. (2017) MiR-146a and miR-196a-2 polymorphisms are associated with hepatitis virus-related hepatocellular cancer risk: a meta-analysis. Aging (Albany NY) 9:381-392
Vassilev, Alex; Lee, Chrissie Y; Vassilev, Boris et al. (2016) Identification of genes that are essential to restrict genome duplication to once per cell division. Oncotarget 7:34956-76
Hao, Jing; de Renty, Christelle; Li, Yongming et al. (2015) And-1 coordinates with Claspin for efficient Chk1 activation in response to replication stress. EMBO J 34:2096-110
Gao, Lei; Li, Dantong; Ma, Ke et al. (2015) TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis. PLoS Genet 11:e1005346
Hao, Jing; Zhu, Wenge (2015) Maintain Genomic Stability: Multitask of DNA Replication Proteins. Transcr Open Access 3: