Epithelial ovarian cancer (EOC) has a substantial hereditary component. Germline mutations in the high- penetrance susceptibility genes BRCA1 and BRCA2 confer EOC risks of around 50% by age 70. These genes are responsible for most families containing several cases of EOC; but the known susceptibility genes account for less than 40% of the excess familial risk of EOC indicating that other genes await discovery. We hypothesize that a substantial proportion of the excess EOC risk is due to moderately penetrant, rare or uncommon functional variants in coding DNA conferring 2 to 10 fold lifetime risks of disease. Identifying additional EOC susceptibility genes could have a major and rapid clinical impact by reducing disease associated mortality through better risk prediction-prevention strategies, and developing novel therapeutic approaches and individualized treatments. There are three phases to this project: The first is a discovery phase, in which we plan to perform exome sequencing in ~200 non-BRCA1/BRCA2 EOC families to characterize the genome wide spectrum of functional coding mutations in these families. We will also leverage sequencing data from ~400 EOC cases that have undergone germline exome sequencing through The Cancer Genome Atlas (TCGA) project, and another ~150 EOC families for whom exome sequencing is ongoing. We will then compare the frequency of candidate functional variants we find with data from a combined exome sequence analysis of ~16,000 non-cancer subjects of European origin from multiple different studies. Next, is a replication phase in which we plan to follow-up candidate genes and variants identified in phase 1, in large-scale sequencing and genotyping efforts, leveraging the epidemiological case-control collections of an international collaboration, the Ovarian Cancer Association Consortium (OCAC). We will perform candidate gene next generation sequencing for approximately 100 genes in 5,000 EOC cases and 5,000 controls to characterize the prevalence of functional deleterious mutations; and for ~20,000 non-synonymous rare variants we identify we will use a customized array to genotype these variants and an additional 260,000 rare variants from the 11,000 exome sequencing project, in 5,000 EOC cases and 5,000 controls to evaluate their disease associations. In the final phase, we will perform penetrance and survival analyses for confirmed functional variants to evaluate their clinical significance, which will indicate the immediate clinical value of the genes/variants we identify.

Public Health Relevance

Genetic factors in the general population can increase our risk to many common traits and diseases, including blood pressure, obesity, diabetes and cancer. In this project, we aim to find genetic factors for ovarian cancer by sequencing the DNA of 5000 women who have ovarian cancer and comparing it to DNA from 5000 women without ovarian cancer. We now have the opportunity to rapidly identify new genetic risk factors for disease and therefore rapidly develop genetic screening strategies that can identify the women in the population most likely to get ovarian cancer and target these women for intervention measures that prevent them developing the disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
7R01CA178535-04
Application #
9286043
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Mechanic, Leah E
Project Start
2013-09-01
Project End
2018-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
4
Fiscal Year
2016
Total Cost
$617,338
Indirect Cost
$188,198
Name
Cedars-Sinai Medical Center
Department
Type
DUNS #
075307785
City
Los Angeles
State
CA
Country
United States
Zip Code
90048
Dicks, Ed; Song, Honglin; Ramus, Susan J et al. (2017) Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene. Oncotarget 8:50930-50940
Pharoah, Paul D P; Song, Honglin; Dicks, Ed et al. (2016) PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations. J Natl Cancer Inst 108:
Ramus, Susan J; Song, Honglin; Dicks, Ed et al. (2015) Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J Natl Cancer Inst 107:
Song, Honglin; Dicks, Ed; Ramus, Susan J et al. (2015) Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J Clin Oncol 33:2901-7
Candido-dos-Reis, Francisco J; Song, Honglin; Goode, Ellen L et al. (2015) Germline mutation in BRCA1 or BRCA2 and ten-year survival for women diagnosed with epithelial ovarian cancer. Clin Cancer Res 21:652-7
Pearce, Celeste Leigh; Stram, Daniel O; Ness, Roberta B et al. (2015) Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol Biomarkers Prev 24:671-676
Song, Honglin; Cicek, Mine S; Dicks, Ed et al. (2014) The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet 23:4703-9