Pancreatic adenocarcinoma (PaCa) is the 4th leading cause of cancer death in the United States and 8th leading cause worldwide. However, if caught at an early stage, there exist effective surgical treatments. A major difficulty with this is the lck established prevention and screening strategies. Here we propose to discover important genetic risk factors to aid in such a strategy, using exome and targeted sequencing of 4,400 pancreatic cases and 4,400 matched controls of European descent. To manage the cost of sequencing such large portions of the genome, we employ the following 2-stage study design, encompassing our first two aims: (1) deep discovery across whole exomes, followed by (2) targeted sequencing of genes deemed most promising in the first stage. This design retains high power (>90%) to identify genes with moderate risk variation for PaCa, based on the patterns of variation discovered in real studies of breast cancer. In our third aim (3) we propose to quantify somatic mutational load in genes identified from large studies of PaCa genomes, using existing tumor tissue. This somatic variation will be paired to whole-exomes sequenced in Aim 1 to elucidate host-tumor genomic interactions. Our proposed work leverages a strong environment of sample resources at MD Anderson Cancer Center and a well-constructed team of diverse expertise spanning fields of Epidemiology, Genomics, Pathology, Surgery and Computational Human Genetics. The analytical methods we propose will be conducted by leading experts in statistical genetics, who have made major contributions to the development of these techniques. Based on previous studies of familial aggregation of PaCa, and the relative paucity of findings to date from genome-wide association studies, we expect there to be numerous genes with rare variation of intermediate to high risk for PaCa. Given the epidemiological and demographic data, our 2-stage study design and large patient resource, our study is well powered for successful identification of these genes. These results will offer new insights in the etiology of this dreaded and deadly disease.

Public Health Relevance

Pancreatic cancer is the 4th leading cause of cancer death in the United States and 8th leading cause worldwide, due to a lack of established prevention strategies and ineffective treatments by the time of diagnosis. However, if detected at an early stage, treatment can be effective. Here we propose to discover important genetic risk factors, using whole-exome sequencing, to ultimately devise strategies for targeted surveillance of individuals at high risk for this terrible disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA181244-04
Application #
9307792
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Zanetti, Krista A
Project Start
2014-07-11
Project End
2019-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Public Health & Prev Medicine
Type
Overall Medical
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030