Multiple Myeloma (MM) is a disease of plasma cells with specific localization in the bone marrow. Recent studies in several malignancies including MM have shown intraclonal architectural heterogeneity at diagnosis and at different stages of disease progression over time. The presence of clonal tides in MM represent a novel paradigm in myeloma evolutionary biology which will revolutionize the current modeling of MM tumorigenesis and progression and are likely to have profound therapeutic implications. However, the role of the supporting bone marrow niche, specifically mesenchymal stromal cells (MSCs) in the clonal evolution of MM and other malignancies has not been previously elucidated. Although many factors regulating tumor progression are tumor cell autonomous, they are insufficient to induce progression and metastasis, and a permissive microenvironment is required for frank malignancy to emerge. In this grant, we focus on MSCs as critical regulators of clonal evolution in MM that allows for more rapid dissemination and drug resistance during disease progression. Our overarching hypothesis is that MSCs are integral regulators of clonal evolution in MM inducing both tumor dissemination and drug resistance during progression. We will examine this in 3 Specific Aims.
Specific Aim 1 will elucidate sequential molecular events that occur in MSCs during MM progression and explore mechanisms of cooperativity of these events with tumor clonal evolution. MM patient samples at different stages of disease progression (MGUS to MM) will be used to determine molecular changes that occur in MSCs that correlate with, or drive tumor clonal diversification.
Specific Aim 2 will determine the role of MSCs in clonal evolution in MM that leads to disease progression. The hypothesis of this aim is that MSCs confer selective advantage of specific clones for tumor progression in MM. We will use in vivo tracking of clones distinguished by fluorophores, where clonal subsets can be molecularly interrogated sequentially to track the biography of cells that emerge as winner or loser MM clones in response to loss-of or gain-of-function studies of specific genes deregulated in MSCs.
Specific Aim 3 will investigate the role of the MSCs in the regulation of drug resistance in MM. Our hypothesis is that specific molecular changes that occur in MSCs after high-dose chemotherapy allow outgrowth of aggressive drug-resistant subclones of MM. In this aim, we will use in vitro and in vivo model systems to determine molecular changes that occur in MSCs after high dose chemotherapy used in stem cell transplant in MM and investigate how this in turn plays a role in clonal evolution and drug resistance in MM. This grant is focused on using innovative and diverse methods to understand the role of MSCs in clonal evolution in MM. We combine patient samples with mouse models to examine, in high-throughput unbiased methods, the role of MSCs in inducing tumor growth, clonal heterogeneity and drug resistance.

Public Health Relevance

Multiple Myeloma (MM) is as a cancer of the plasma cells characterized by clonal progression from early stages like monoclonal gammopathy of undetermined significance (MGUS) to overt MM. This grant focuses on understanding the role of stromal cells in helping the clonal progression of MM clones and in inducing drug resistance. This grant proposal combines patient samples with mouse models to examine how the stroma helps clonal evolution in MM from MGUS stages to active MM. These studies will lead to significant advances in the treatment of patients with this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA181683-02
Application #
8887316
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Howcroft, Thomas K
Project Start
2014-07-07
Project End
2019-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
Kurdi, Ahmed T; Glavey, Siobhan V; Bezman, Natalie A et al. (2018) Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Mol Cancer Ther 17:1454-1463
Kawano, Yawara; Zavidij, Oksana; Park, Jihye et al. (2018) Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest 128:2487-2499
Mishima, Yuji; Paiva, Bruno; Shi, Jiantao et al. (2017) The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep 19:218-224
Manier, Salomon; Huynh, Daisy; Shen, Yu J et al. (2017) Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Sci Transl Med 9:
Moschetta, M; Mishima, Y; Kawano, Y et al. (2016) Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia 30:1103-15
Kawano, Yawara; Moschetta, Michele; Manier, Salomon et al. (2015) Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 263:160-72
Roccaro, Aldo M; Mishima, Yuji; Sacco, Antonio et al. (2015) CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Rep 12:622-35
Weinstock, Mathew; Aljawai, Yosra; Morgan, Elizabeth A et al. (2015) Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br J Haematol 169:851-8
Salem, Karma Z; Ghobrial, Irene M (2015) The road to cure in multiple myeloma starts with smoldering disease. Expert Opin Orphan Drugs 3:
Bianchi, Giada; Ghobrial, Irene M (2014) Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma. Curr Cancer Ther Rev 10:70-79

Showing the most recent 10 out of 13 publications